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Abstract

This paper introduces a new three-parameters model called the Weibull Generalized
exponential distribution (WGED) which exhibits bathtub-shaped hazard rate. Some
of its statistical properties are obtained including quantile, moments, generating
function, reliability and order statistics. The method of maximum likelihood is used
for estimating the model parameters and the observed Fisher’s information matrix is
derived. We illustrate the usefulness of the proposed model by application to real data.

Keywords: Weibull-G class; exponential distribution; generalized exponential;
estimating parameters; maximum likelihood estimation..
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Abstract

This paper introduces a new three-parameters model called the Weibull Generalized
exponential distribution which exhibits bathtub-shaped hazard rate. Some of its statistical
properties are obtained including quantile, moments, generating function, reliability and or-
der statistics. The method of maximum likelihood is used for estimating the model param-
eters and the observed Fisher’s information matrix is derived. We illustrate the usefulness
of the proposed model by application to real data.

Keywords: Weibull-Generalized class; exponential distribution; generalized exponential; maximum
likelihood estimation.

1 Introduction

The exponential distribution (ED), [3, 4], has a wide range of applications including life testing experi-
ments, reliability analysis, applied statistics and clinical studies. This distribution is a special case of the
two parameter Weibull distribution with the shape parameter equal to 1. The origin and other aspects of
this distribution can be found in [4, 5, 6, 7]. A random variable X is said to have ED with parameters
A > 0if it’s probability density function (pdf) is given by

g(x) = Ae™M 2 >0, (1.1)

while the cumulative distribution function (cdf) is given by

Gz)=1—e  2>0. 1.2)
The survival function is given by the equation
SE)=1-G@®) =e, 2>0, (1.3)
and the hazard function is

h(z) = A. (1.4)

Weibull distribution introduced by [22] is a popular distribution for modeling phenomenon with mono-
tonic failure rates. But this distribution does not provide a good fit to data sets with bathtub shaped or
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upside-down bathtub shaped (unimodal) failure rates, often encountered in reliability, engineering and
biological studies. Hence a number of new distributions modeling the data in a better way have been
constructed in literature as ramifications of Weibull distribution. Bourguignon et al. [15] introduced and
studied generality a family of univariate distributions with two additional parameters. Similarly as the
extended Weibull, Gurvich et al. [9] and gamma families, Zografos and Balakrshnan [23], using the
Weibull generator applied to the odds ratio 1fg&) If G(x) is the baseline cumulative distribution func-
tion (cdf) of a random variable, with probability density function (pdf) g(«) and the Weibull cumulative
distribution function is

b

F(x;a,b)=1—e %, x>0, (1.5)

with parameters ¢ and b are positive. Based on this density, by replacing x with ratio 15((3&) The cdf

of Weibull- generalized distribution, say Weibull-G distribution with two extra parameters a and b, is
defined by, Bourguignon et al. [15]

G(z\)
T=G(ziX) I
F(x;a,b,)) / abt® e~ gy
0
G(zA
7”'[17&1;))\)?

= 1l-—e x>0, a,b>0. (1.6)

Where G(x; \) is a baseline cdf, which depends on a parameter . The corresponding family pdf be-
comes

%e‘a[f&%]b.

A random variable X with pdf Eq. (1.7) is denoted by X distributed weibll-G(a,b,\), € R, a,b > 0.
the additional parameters induced by the weibull generator are sought as a manner to furnish a more
flexible distribution. If b = 1, it corresponds to the exponential- generator. An interpretation of the
weibull-G family of distributions can by given as follows ( Coorary, [2]) is a similar context.

Let Y be a lifetime random variable having a certain continuous G distribution. The odds ratio that an
individual (or component) following the lifetime Y will die (failure) at time z is lf‘éz&) Consider that
the variability of this odds of death is represented by the random variable X and assume that it follows
the Weibull model with scale a and shape b. We can write

flx;a,b,\) = abg(z; A) 1.7

Pr(Y <z)=Pr (X < %) = F(x;a,b,\).

Which is given by Eq. (1.6). The survival function of the Weibull-G family is given by
—a| G(;t) ]b
R(z;a,b,\) =1— F(z;a,b,\) =e "11-CG=) | (1.8)

and hazard rate function of the Weibull-G family is given by

flaa,b,))  abg(a; NGz )P

h@a.b D) = TG by T = G AP
_ G Nt

i
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where h(x; \) = T@&) The multiplying quantity % works as a corrected factor for

the hazard rate function of the baseline model Eq.(1.6) can deal with general situation in modeling sur-
vival data with various shapes of the hazard rate function. By using the power series for the exponential
function, we obtain

° [ ib
—alf 8y (D Gl
e ;:0 T\ cm) (1.10)

substituting from Eq.(1.10) into Eq. (1.7), we get

. o (D [Gas AP
f(@;a,b,)) = abg(x; A)Z; T = Gl P (1.11)
Using the generalized binomial theorem we have
—o(s DD +1)+j+1) ;
EaTon (b(i+1)+1) _ e\
[1—G(a:\)] ]z:: N GEESY Gz N . (1.12)
Inserting Eq. (1.12) in Eq. (1.11), the Weibull-G family density function is
o a1 L(b(i +1) +j +1) b(it1)+j—1
flasa,b,\) ZZ N CESIES) g(z: \)[G(z: \)] . (1.13)

=0 j=0

For more details on Weibull-G family, we can refer [8, 10, 11, 14, 18]

In Section 2, we define the cumulative, density and hazard functions of the Weibull Generalized Exponen-
tial distribution (WGED) . In Sections 3 and 4, we introduced the statistical properties include, quantile
function skewness and kurtosis, rth moments and moment generating function. The distribution of the
order statistics is expressed in Section 5. Finally, maximum likelihood estimation of the parameters is
determined in Section 6. Real data sets are analyzed in Section 7 and the results are compared with
existing distributions. Finally we introduce the conclusions in Section 8.

2 The Weibull Generalized Exponential Distribution

In this Section, we study the three parameters WGED. Using G(z) and g(z) in Eq. (1.13) to be the
cdf and pdf of Eq. (1.6) and Eq. (1.7). The cumulative distribution function (cdf) of the Weibull-G
exponential distribution (WGED) is given by

F(z;a,b,\) =1— e_a[eu_l]b, x>0, a,bX>0. 2.1
The pdf corresponding to Eq. (2.1) is given by

Flxa,b, ) = abA [ — 1P Lemale 1" g5, 2.2)

where a,b > 0 and A > 0 are two additional shape parameters.
Plots of the cdf, Eq. (2.1), of the WGED for some parameter values are displayed in Figure 1,
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Figure 1: The cdf of the WGED.
We denote by X ~ WGED(a,b, \) arandom variable having the pdf Eq. (2.1). The survival function,

S(x), hazard rate function, h(x), reversed hazard rate function, (z) and cumulative hazard rate function
H(x) of X are given by

S(zia,b,\) =1 — Fz;a,b\) = e =" 250, 2.3)
B(z;a,b,)) = abre [ — 171 x>0, 2.4)

ab\ e [eAm — 1}?7*1 . g—ale*® -1

r(z;a,b,\) = I , x>0, (2.5)

and
oo

H(z;a,b,\) = /h(w; a,b,\)dx = a [eeh — 1]b R (2.6)
0
respectively. Plots of S(z;a,b,\), h(z;a,b,\),r(x;a,b,\) and H(z;a,b, \) of the WGED for some
parameters values are displayed in Figures 2-6.
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Figure 3: The survival function of the WGED.
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Figure 4: The hazard rate function of the WGED.
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Figure 6: Cumulative hazard rate function of the WGED.
It is clear that the pdf and the hazard function have many different shapes, which allows this distribution
to fit different types of lifetime data.
3 Statistical Properties

In this Section, we study the statistical properties for the WGED, specially quantile function and simu-
lation median, skewness, kurtosis and moments.

3.1 Quantile and median

In this subsection, we determine the explicit formulas of the quantile and the median of WGED. The
quantile z, of the WGED is given by

F(zg)=q, 0<g<1. (3.1)

From Eq. (2.1), x4 can be obtained as follows.

i (Cua-g) (32)
Tq = 3 n p n q . .
Setting ¢ = 0.5 in Eq. (3.2), we get the median of WGED as follows.
1
1 In(2)\*
Tq = Xln [1 + (_T) } . (3.3)

3.2 The mode

In this subsection, we will derive the mode of the WGED by derivation its pdf with respect to x and
equate it to zero. The mode is the solution the following equation with respect to x.

f(x)=o. (3.4)
By substitution pdf from Eq. (2.2) in Eq.(3.4), we have
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% {abk . e)\zl A [e)\zi _ 1]17—1 . e—a[e”l—l]b:| =0,

d(ic {h(x a,b,A) - S(z; a,0b, A)} -

[h/(w; a,b,\) - S(z;a,b,\) + h(z;a,b,\) - S,(.’L’; a,b, )\)] =
then
{h'(m; a,b,)) — (h(z;a,b, ,\))Q] S(z;a,b,\) =0, (3.5)

where h(x;a,b,\), S(x;a,b, \) are hazard function and survival function of WGED respectively.
It is not possible to get an analytic solution in = to Eq. (3.5) in the general case. It has to be obtained
numerically by using methods such as fixed-point or bisection method.

3.3 Skewness and kurtosis

The analysis of the variability Skewness and Kurtosis on the shape parameters b, A can be investigated
based on quantile measures. The short comings of the classical Kurtosis measure are well-known. The
Bowely’s skewness [12] based on quartiles is given by

q0.75) — 24(0.5) + G(0.25)

Sk = (3.6)
4(0.75) — 4(0.25)
and the Moors’” Kurtosis [16] is based on octiles
- 505) — 4(0.375) T
K, = 4(0.875) — 4(0.625) — 4(0.375) (J(o.125)’ (3.7)

q(0.75) — 4(0.25)
where () represents quantile function.

3.4 Moments

In this subsection, we discuss the rth moment for WGED. Moments are important in any statistical
analysis, especially in applications. It can be used to study the most important features and characteristics
of a distribution (e.g. tendency, dispersion, skewness and kurtosis).

Theorem 3.1. If X has WGED (a, b, \), then the rth moments of random variable X, is given by the
following

N (1) R IT (b + 1) 45 + DD+ 1) (b + 1)+ +1
ZZ AN (k + 1) HIT((b+ 1) + 1) ( k >

p%g

(3.8)

i=0 j=0 k=0

I\
o
<.

Proof. We start with the well known distribution of the rth moment of the random variable X with pdf
f(x) given by

/L;“ = / lﬂ‘f(l'; a,b, )\)d.’c. (3.9)
0

Substituting from Eq. (1.1) and Eq. (1.2) into Eq. (1.13) we get
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[e'e]

. (=)'t T4 1)+ 5+ 1) / . ,Az IR LG i
ur—;; WG+ 1) + 1) z" e e } dz,
=U= 0

since 0 < 1 — ¢~ < 1 for 2 > 0, the binomial series expansion of

[1 - e—m]b(iﬂ)ﬂ-ﬂ

yields

o

{176%] (i+1)+j— 122( 1y ( z‘+1)k+j71>6,km7

then we get

Mz
Mg

i D RGINT(b(i + 1) 4+ 5+ 1) (bi+1) 45 — 1 /°° e+ g,
— GIT((b+i)+1) k 0 ’

%

[l
=]
<.
Il
o

by using the definition of gamma function in the form, Zwillinger [24],

o

rZz) = a:z/emtzfldt, z,x,> 0.
0

Finally, we obtain the rth moment of WGED in the form

§ AR A ()R B( 1) 4 DT (e 1) [+ 1) 51
ZZZ iGN (B + D) HID((b+4) + 1) ( k )

This completes the proof. O

4 The Moment Generating Function

The moment generating function (mgf), Mx (t), of a random variable X provides the basis of an alter-
native route to analytic results compared with working directly with the pdf and cdf of X.

Theorem 4.1. The moment generating function (mgf) of WGED is given by

/ B 0o 00 oo 0o (—1)i+kai+1trF(b(i+1)+j+1)F(r+1) b(’i+1)+j+1
MX(t%;;;; AN (k + D I0((b 1 4) + 1) ( K ) @D

<
ol

Proof. The moment generating function, Mx (t), of the random variable X with pdf, f(z) is given by

Mx (t) :/ et f(x; a,b, N)dz,
0

using series expansion of ¢!, we obtain
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2t [ =t
Mx(t) = Z — 2" f(x;a,b,\)dx = Z — [l (4.2)
7! 0 : r!
r=0 r=0

Substituting from Eq. 3.8 into Eq. 4.2, we obtain the moment generating function of WGED in the form

, o om o o (—1) R (b6 + 1)+ + DD(r+ 1) (b + 1) + 5 +1
Myx(t) = .
x(t) ;; ;0 g TV (k+ Db +4) + 1) k
This completes the proof. o

5 Order Statistics

In this Section, we derive closed form expressions for the pdf of the rth order statistic of the WGED. Let
X1, Xoun, -+, X denote the order statistics obtained from a random sample X1, Xo, - - -, X, which
taken from a continuous population with cdf, F'(x; ) and pdf, f(x;¢), then the pdf of X,.,, is given

fran(z0) = B ! [F(z;0)] 71 = F(z;0)]" 7" f (23 0), (5.1

rn—r+1)

where f(x;¢), F(z; ) are the pdf and cdf of WG ED(yp) given by Eq. (2.2) and Eq.(2.1) respectively,

¢ = (a,b, \) and B(.,.) is the beta function, also we define first order statistics X1., = min(X1, Xo,- -+, Xy,),
and the last order statistics as Xy, = max(X, Xo, -+, X,,). Since 0 < F(z;¢) < 1 forz > 0, we

can use the binomial expansion of [1 — F'(z; ¢)]™~" given as follows

n—r

1= raer =Y (") 0 52)

i=0
Substituting from Eq. (5.2) into Eq. (5.1), we obtain

DN f(x;9) —(n—r i ]
fr:n,(x7(p)_m;< . >(71) [F(z; )] (5.3)

Substituting from Eq. (2.1) and Eq. (2.2) into Eq. (5.3), we obtain

n—ritr—1 i+ . _
fr:n(x;a,b,)\):z Z i (—=1)*in <z+f 1)f(x;(j+1)a,m). 54

— 1\ n—=-r-=1)!
e A G Din—r—1)! J

Relation (5.4) show that f.,(z; ) is the weighted average of the WGED with different shape parame-
ters.

6 Parameters Estimation

In this Section, point and interval estimation of the unknown parameters of the WGED are derived by
using the method of maximum likelihood based on a complete sample data.

Baold Golall ) & 22022 gle (2)sdall (3)hs
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6.1 Maximum likelihood estimation:

Let 1,22, - - , 2, denote a random sample of complete data from the WGED. The likelihood function
is given as
n
L=]]f@iabN), 6.1)
i=1

substituting from (2.2) into (6.1), we have

n
L — Hab)\ i [e)w,: o l]bflcfa[c“'ifl]”.

i=1
The log-likelihood function is
n n n
L=nln(abd) + A 2+ (0 -1)> In(e —1)—ad [ —1]" (6.2)
i=1 i=1 i=1

The maximum likelihood estimation (MLE) of the parameters are obtained by differentiating the log-
likelihood function £ with respect to the parameters a, b and A and setting the result equal to zero, we
have the following normal equations.

oL - S b

NS A I o ] AU BT
i=1 i=1

oL " U @ = PRI L

5.:§+Z¥H@_n;§§j—w;mwﬂWuq =0. (65

The MLEs can be obtained by solving the nonlinear equations previous, (6.3)—(6.5), numerically for a, b
and \.

6.2 Asymptotic confidence bounds

In this Section, we derive the asymptotic confidence intervals of these parameters when a,b > 0 and
A > 0 as the MLEs of the unknown parameters a,b > 0 and A > 0 can not be obtained in closed forms,
by using variance covariance matrix 7~1 see Lawless [13], where I~ is the inverse of the observed
information matrix which defined as follows

T A
oo | CE T T
- ~ 9bJa 76_4)7 ~ 9boX
_ &L _ 9t _9*%
dXda b )Y
var(@)  cov(a,b) cov(a, )
= cov(b,a) wvar(b)  cov(b,\) (6.6)
cov(\,a) cov(A,b)  war(\)
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The second partial derivatives included in I are given as follows.

% - (6.7)
gjgb = *i[emi”]bln(eh”l)’ 6.8)
s = ’bif‘”em [ -] (6.9)
e RO SN G
gjaﬁx = éem “er“l[e“ifllbfl b —1) 1], 6.11)
I e ) o]

i=1

We can derive the (1 — §)100% confidence intervals of the parameters a,b and A, by using variance
matrix as in the following forms

axZs

s
2

var(a), b+ Zs
2

var(b), XiZ% var(}),

where Z s is the upper (g)—th percentile of the standard normal distribution.
2

7 Application

In this Section, we present the analysis of a real data set using the WGED (a, b, \) model and com-
pare it with the other fitted models such as ED, generalized exponential distribution (GED), [3], beta
exponential distribution (BED), [17] and the beta generalized exponential distribution (BGED), [21] us-
ing Kolmogorov-Smirnov (K-S) statistic, as well as Akaike information criterion (AIC), Akaike , [1],
Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) values, Schwarz
[19].

The data set is obtained from Smith and Naylor [20]. The data are the strengths of 1.5 cm glass fibres,
measured at the National Physical Laboratory, England. Unfortunately, the units of measurement are not
given in the paper. This data set is in Table 1.

Table 1: The data are the strengths of 1.5 cm glass fibres, [20].
055 093 125 136 149 152 158 1.61 1.64
168 173 181 2 074 104 127 139 149
153 159 161 166 168 176 182 201 0.77
.11 128 142 15 154 16 162 166 1.69
176 184 224 081 1.13 129 148 15 155
161 162 166 1.7 177 184 084 124 13

148 151 155 1.61 1.63 1.67 1.7 178 1.89
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Table 2 gives MLs of parameters of the WGED and sub-models and goodness of fit statistics are in Table
3.

Table 2: MLEs of parameters, Log-likelihood.

Model MLEs of parameters K-S p-value
ED A=0.664 0.402316  1.44529 x 10~%
GED A=2.6105, 4=31.3032 0.213118 0.005444
BED a=17.7786, b=22.7222, A=0.3898 0.159819 0.07220
BGED d=0.4125, 0=93.4655, A=0.92271, 4=22.6124 0.150611 0.10470
WGED 4=56.881, b=4.893, A=0.222 0.127366 0.24259

Table 3: Log-likelihood, AIC, AICC, BIC and HQIC values of models fitted.
Model L —2L AIC AICC BIC HQIC
ED -88.8300 -177.6600 179.6600 179.7256 181.8031 180.5029
GED -31.3834 -62.7668  66.7668  66.9668  71.0531  68.4526
BED -24.1270  -48.2540  54.2540 54.6608  60.6834  56.7827
BGED -15.5995 -31.1990 39.1990 39.8887 47.7715  42.5706
WGED -14.828  -29.6560 35.6560 36.0628  42.0854  38.1847

We find that the WGED with the three-number of parameters provides a better fit than the previous new
modified exponential distribution which was the best in [3, 4, 17, 21]. It has the largest likelihood, and
the smallest K-S, AIC, BIC and HQIC values among those considered in this paper.

Substituting the MLE’s of the unknown parameters a, b, A into (6.6), we get estimation of the variance
covariance matrix as the following

3.655 x 10° 7.228 —2.205
Iyt = 7.228 0.213 1.141 x 1073
—2.205 1.141 x 10=2  1.505 x 1073
The approximate 95% two sided confidence intervals of the unknown parameters a, b and A are
[0,175.11], [3.989,57.785] and [0.146, 0.298], respectively.
To show that the likelihood equation have unique solution, we plot the profiles of the log-likelihood
function of a, b and A in Figures 7 and 8.
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Figure 7: The profile of the log-likelihood function of a, b.
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Figure 8: The profile of the log-likelihood function of A.

The nonparametric estimate of the survival function using the Kaplan-Meier method and its fitted para-
metric estimations when the distribution is assumed to be ED, GE, BED, BGED and WGED are com-

puted and plotted in Figure 9.
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Figure 9: The Kaplan-Meier estimate of the survival function for the data.

Figure 10 gives the form of the cdf for the ED, GE, BED, BGED and WGED which are used to fit the
data after replacing the unknown parameters included in each distribution by their MLEs.
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8 Conclusions

A new distribution, based on Weibull- Generalized family distributions, has been proposed and its prop-
erties studied. The idea is to add parameter to ED, so that the hazard function is either increasing or
more importantly, bathtub shaped. Using Weibull generator component, the distribution has flexibility
to model the second peak in a distribution. We have shown that the WGED fits certain well-known data
sets better than existing modifications of the generalized families of ED.

References

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Auto-
matic Control, AC-19, pp. 716-23.

[2] Cooray, K. (2006). Generalization of the Weibull distribution: the odd Weibull family. Statistical
Modelling, Vol. 6, pp. 265-2717.

[3] Gupta, R. D. and Kundu, D. (1999). Generalized exponential distribution. Australian and New
Zealand Journal of Statistics, Vol. 41, no. 2, pp. 173-88.

[4

—

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family; an alternative to gamma
and Weibull. Biometrical Journal, Vol. 43, pp. 117-130.

[5

—

Gupta, R. D. and Kundu, D. (2001). Generalized exponential distributions: different methods of
estimation. Journal of Statistical Computation and Simulation, Vol. 69, pp. 315-338.

[6

[}

Gupta, R. D. and Kundu, D. (2002). Generalized exponential distributions: statistical inferences.
Journal of Statistical Theory and Applications, Vol. 1, pp. 101-118.

[7

—

Gupta, R. D. and Kundu, D. (2003). Discriminating between the Weibull and the GE distributions.
Computational Statistics and Data Analysis, Vol. 43, pp. 179-196.

[8

—

Gupta, N. and Jamal, Q. A. (2019). Inference for Weibull generalized exponential distribution based
on generalized order statistics, Journal of Applied Mathematics and Computing, Vol. 61, No. 1-2,
pp- 573-592.

[9

—

Gurvich, M. R. DiBenedetto, A. T. and Ranade, S. V. (1998). A new statistical distribution for
characterizing the random strength of brittle materials. Journal of Materials Science, Vol. 32, pp.
2559-2564.

[10] Hassan, A. and Elegarhy, M. (2019). Exponentiated Weibull Weibull Distribution: Statistical Prop-
erties and Applications. Gazi University Journal of Science, Vol. 32, pp. 616-635.

[11] Ibe, G.C., Ekpenyoung, E.J., Anyiam, K. and John, C. (2021). The Weibull-Exponential Rayleigh
Distribution: Theory and Application. Earthline Journal of Mathematical Sciences, Vol. 6, pp.
65-86. https://doi.org/10.34198/ejms.6121.6586

[12] Kenney, J. and Keeping, E. Mathematics of Statistics. Vol. Princeton, (1962).

[13] Lawless, J. F. Statistical Models and Methods for Lifetime Data. John Wiley and Sons, New York,
Vol. 20, pp. 1108-1113, (2003).

i

22022 yle (2)3) (3)s & Aald dalal s
https://doi.org/10.54582/TS].2.2.19 |||||| b ]



g Shamsan Abdullah Nasser AL-Garash
Shamsan AL-Garash, B. S. El-Desouky and Abdelfattah Mustafa 15

(14] Madmoudi, E., Meshkat, R.S., Kargar, B. and Kundu, D. (2018). The Extended Exponential
Weibull Distribution and Its Applications. Statistica, Vol. 78, pp. 363-3%.

[15] Marcelo, B. Silva, R. and Cordeiro, G., (2014). The Weibull - G Family Probability Distributions.
Journal of Data Science, Vol. 12, pp. 53-68.

[16] Moors, J.J.A. (1998). A quantile alternative for kurtosis. The Statistician, Vol. 37, pp. 25-32.

[17] Nadarajah, S. and Kotz, S., (2006). The beta exponential distribution. Reliability Engineering and
System Safety, Vol. 91, pp. 689-697.

(18] Ramirez, F. P Guerra, R., Cordeiro, G. and Marinho, PD. (2018). The Exponentiated Power Gen-
eralized Weibull: Properties and Applications. Anais daAcademia Brasileira de Ciéncias, Vol. 90,
No. 3, pp. 2553-2577.

(19] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, Vol. 6, pp. 461-4.

[20] Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estima-
tors for the three-parameter Weibull distribution. Applied Statistics, Vol. 36, pp. 358-369.

[21] Wagner Barreto-Souza, Alessandro H. S. and Gauss M. Cordeiro (2009). The Beta Generalized
Exponential Distribution. Journal of Statistical Computation and Simulation, Vol. 80, pp. 159-172.

[22] Weibull, W. (1951). Wide applicability. Journal of applied mechanics, Vol. 40, pp. 203-210.

23] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated
distributions and associated inference. Statistical Methodology, Vol. 6, pp. 344-362.

[24] Zwillinger, D. Table of integrals, series, and products. Elsevier, (2014).

Baald dealall 2l & 02022 yls (2)32a) (3)lt

! .||||| https://doi.org/10.54582/TS].2.2.19




