Entropy Solutions for strong nonlinear Elliptic problem in Musielak-Orlicz-Sobolev spaces

> د. محمد علي محسن الحومي¹ Dr. Mohammed Ali Mohsen Al-Hawmi² د. بسام عبد القادر عاتق الحمزة³ Dr. Bassam Abdulgader Ateg AL-Hamzah⁴

https://doi.org/10.54582/TSJ.2.2.18

(1) أستاذ المعادلات التفاضلية الجزئية المساعد – قسم الرياضيات – كلية التربية والعلوم– جامعة إقليم سبأ – مأرب – اليمن

m.alhomi2011@gmail.com: : عنوان المراسلة

(2) Assistant Professor of partial differential equations,
Department of Mathematics, Faculty of Education and Sciences,
University of Saba Region, Marib, Yemen

(3) أستاذ المعادلات التفاضلية الحنائية المساعد - قسم الرياضيات - كلية التربية والعام و حامعة

(3) أستاذ المعادلات التفاضلية الجزئية المساعد – قسم الرياضيات – كلية التربية والعلوم – جامعة إقليم سبأ – مأرب – اليمن

عنوان المراسلة : bassamalhamzah@yahoo.com

(4) Assistant Professor of partial differential equations, Department of Mathematics, Faculty of Education and Sciences, University of Saba Region, Marib, Yemen

Dr. Mohammed Ali Al-Hawmi – Dr. Bassam Abdulqader AL-Hamzah

الملخص

في هذه الورقة ، نبرهن وجود الحول الكونية لبعض فئة مشكلة القطع الناقص القوية الغير خطية للنوع:

$$Au + g(x, u, \nabla u) = f$$
 in Ω

في فضاءات ميزلاك – أورلكس – سبوليف $W^1_0L_{arphi}(\Omega)$ تحت شروط أن دالة المرافق

$$\Delta_2$$
 لدالة ميزلاك $\phi(x,t)$ ورلكس لدالة ميزلاك الميزلاك الميزلاك

 $|oldsymbol{\xi}|$ نفرض أن الدالة $f\in L^1(\Omega)$ و $g(x,s,oldsymbol{\xi})$ تحقق فقط بعض النمو الغير القياسي مع ما يتعلق

الكلمات المفتاحية : فضاءات ميزلاك – أورلكس – سبوليف ، مشكلة القطع الناقص الغير خطية

، دالة القطع ، الحلول الكونية.

Abstract

In this paper, we prove the existence of entropy Solutions for some class of strong nonlinear elliptic problem of the type

$$-diva(x, u, \nabla u) + g(x, u, \nabla u) = f$$

In the Musielak-Orlicz-Sobolev spaces $W_0^1L_{\varphi}(\Omega)$ under the assumption that $\psi(x,t)$, the conjugate function of the Munielak-Orlicz function $\varphi(x,t)$, satisfies the Δ_2 -condition,

we assume that $f \in L^1(\Omega)$ and $g(x, s, \xi)$ satisfies only some nonstandard growth with respect to $|\xi|$.

keywords: Musielak-Orlicz-Sobolev spaces, nonlinear elliptic problem, truncation function, entropy solutions.

Dr. Mohammed Ali Al-Hawmi - Dr. Bassam Abdulgader AL-Hamzah

1 Introduction

Let Ω be an open subset of \mathbb{R}^n . In this paper, we study the existence of solutions for strong nonlinear elliptic problems of the form:

$$Au + g(x, u, \nabla u) = f$$
 in Ω (1.1)

where A is the Leray-Lions operator defined as:

$$A(u) = -\text{div } a(x, u, \nabla u)$$

and $g(x, s, \xi)$ presents the nonlinearity of the problem (1.1).

A. Bensoussan, L. Boccardo and F. Murat [14] proved the existence of solutions for the Dirichlet problem of the form (1.1), where $g(x, s, \xi)$ satisfies:

$$\begin{array}{lcl} |g(x,s,\xi)| & \leq & b(|s|)(c(x)+|\xi|^p) & \quad \text{(natural growth condition)} \\ g(x,s,\xi).s & \geq & 0 & \quad \text{(sign condition)} \end{array}$$

we refer also to [4, 5] for more details. A. Benkirane and A. Elmahi [10] have proved the existence theorem of the problem (1.1) in Orlicz-Sobolev-space $W^1L_M(\Omega)$, by assuming a sign condition and a natural growth condition on $g(x, s, \xi)$ of the form :

$$|g(x, s, \xi)| \le b(|s|)(c(x) + M\left(\frac{|\xi|}{\lambda}\right))$$
 (M(·) is an N-function)

The N-function $M(\cdot)$ is supposed to satisfy the Δ_2 -condition and the domain Ω of \mathbb{R}^n satisfying the segment property, in order to construct a complementary system $(W_0^1L_M(\Omega), W_0^1E_M(\Omega); W^{-1}L_M(\Omega), W^{-1}E_M(\Omega))$.

In [15], A. Elmahi and D. Meskine have proved the existence of solution for the problem (1.1) without assuming Δ_2 -condition on φ and its conjugate function. In [6, 8] were studies in in Musielak-Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of entropy solutions for the strong nonlinear elliptic problem, by assuming that the conjugate function of Musielak-Orlicz function $\varphi(x,t)$ satisfies Δ_2 -condition and using corollary 1 of [12] to construct a complementary system $(W_0^1 L_{\varphi}(\Omega), W_0^1 E_{\varphi}(\Omega); W^{-1}L_{\psi}(\Omega), W^{-1}E_{\psi}(\Omega))$ without consider that Ω verifies the segment property.

2 Preliminaries

In this section, we introduce some definitions and known facts about Musielak-Orlicz-Sobolev spaces. Standard reference is [19].

2.1 Musielak-Orlicz function

Let Ω be an open subset of \mathbb{R}^N $(N \ge 2)$, and let $\varphi(x,t)$ be a real-valued function defined in $\Omega \times \mathbb{R}^+$ and satisfying the following conditions:

(a) $\varphi(x,\cdot)$ is an N-function, i.e. convex, nondecreasing, continuous, $\varphi(x,0)=0,\ \varphi(x,t)>0$ for all t>0, and :

$$\lim_{t\to 0}\sup_{x\in\Omega}\frac{\varphi(x,t)}{t}=0\quad,\quad \lim_{t\to \infty}\inf_{x\in\Omega}\frac{\varphi(x,t)}{t}=\infty$$

(b) $\varphi(\cdot,t)$ is a measurable function.

A function $\varphi(x,t)$ which satisfies conditions (a) and (b) is called a Musielak-Orlicz function. For a Musielak-Orlicz function $\varphi(x,t)$ we set $\varphi_x(t) = \varphi(x,t)$ and let $\varphi_x^{-1}(t)$ the reciprocal function with respect to t of $\varphi_x(t)$, i.e.

$$\varphi_x^{-1}(\varphi(x,t)) = \varphi(x,\varphi_x^{-1}(t)) = t.$$

For any two Musielak-Orlicz functions $\varphi(x,t)$ and $\gamma(x,t)$, we introduce the following ordering:

(c) If there exists two positives constants c and T such that for almost everywhere $x \in \Omega$:

$$\varphi(x,t) \le \gamma(x,ct)$$
 for $t \ge T$,

we write $\varphi \prec \gamma$, and we say that γ dominate φ globally if T = 0, and near infinity if T > 0.

(d) For every positive constant c and almost everywhere $x \in \Omega$, if

$$\lim_{t\to 0}(\sup_{x\in\Omega}\frac{\varphi(x,ct)}{\gamma(x,t)})=0\quad or\quad \lim_{t\to \infty}(\sup_{x\in\Omega}\frac{\varphi(x,ct)}{\gamma(x,t)})=0,$$

we write $\varphi \prec \prec \gamma$ at 0 or near ∞ respectively, and we say that φ increases essentially more slowly than γ at 0 or near ∞ respectively.

Let

$$\psi(x,s) = \sup_{t \ge 0} \{ st - \varphi(x,t) \}$$

that is, $\psi(x,t)$ is the Musielak-Orlicz function complementary to (or conjugate) of $\varphi(x,t)$ in the sense of Young with respect to the variable s.

The Musielak-Orlicz function $\varphi(x,t)$ is said to satisfy the Δ_2 -condition if, there exists k>0 and a nonnegative function $h(\cdot)\in L^1(\Omega)$, such that

$$\varphi(x, 2t) \le k\varphi(x, t) + h(x)$$
 a.e. $x \in \Omega$,

for large values of t, or for all values of t.

2.2 Musielak-Orlicz Lebesgue space

In the following, the measurability of a function $u:\Omega\longmapsto I\!\!R$ means the Lebesgue measurability. We define the functional

$$\varrho_{\varphi,\Omega}(u) = \int_{\Omega} \varphi(x,|u(x)|) dx$$

where $u: \Omega \longrightarrow I\!\!R$ is a measurable function. The set

$$K_{\varphi}(\Omega) = \{u : \Omega \longmapsto \mathbb{R} \mid \text{measurable } / \varrho_{\varphi,\Omega}(u) < +\infty \}$$

is called the Musielak-Orlicz class (the generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz space) $L_{\varphi}(\Omega)$ is the vector space generated by $K_{\varphi}(\Omega)$, that is, $L_{\varphi}(\Omega)$ is the smallest linear space containing the set $K_{\varphi}(\Omega)$; equivalently

$$L_{\varphi}(\Omega) = \Big\{ u : \Omega \longmapsto I\!\!R \quad \text{measurable} \quad / \quad \varrho_{\varphi,\Omega}(\frac{|u(x)|}{\lambda}) < +\infty, \quad \text{for some } \lambda > 0 \Big\}.$$

In the space $L_{\varphi}(\Omega)$, we define the following two norms:

$$||u||_{\varphi,\Omega} = \inf\Big\{\lambda > 0 \ / \ \int_{\Omega} \varphi(x,\frac{|u(x)|}{\lambda}) \, dx \leq 1\Big\},$$

which is called the Luxemburg norm, and the so-called Orlicz norm by:

$$|||u|||_{\varphi,\Omega}=\sup_{||v||_{\psi}\leq 1}\int_{\Omega}|u(x)v(x)|\,dx,$$

where $\psi(x,t)$ is the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x,t)$. These two norms are equivalent [19].

The closure in $L_{\varphi}(\Omega)$ of the bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. It is separable space and $E_{\psi}(\Omega)^* = L_{\varphi}(\Omega)$ [19].

We have $E_{\varphi}(\Omega) = K_{\varphi}(\Omega)$ if and only if $K_{\varphi}(\Omega) = L_{\varphi}(\Omega)$ if and only if φ has the Δ_2 -condition for large values of t, or for all values of t, according to whether Ω has finite measure or not.

Dr. Mohammed Ali Al-Hawmi – Dr. Bassam Abdulgader AL-Hamzah

2.3 Musielak-Orlicz-Sobolev space

We now turn to the Musielak-Orlicz-Sobolev space. $W^1L_{\varphi}(\Omega)$ (resp. $W^1E_{\varphi}(\Omega)$) is the space of all measurable functions u such that u and its distributional derivatives up to order 1 lie in $L_{\varphi}(\Omega)$ (resp. $E_{\varphi}(\Omega)$). Let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ with nonnegative integers α_i , $|\alpha| = |\alpha_1| + |\alpha_2| + \ldots + |\alpha_n|$ and $D^{\alpha}u$ denotes the distributional derivatives.

$$\overline{\varrho}_{\varphi,\Omega}(u) = \sum_{|\alpha| < 1} \varrho_{\varphi,\Omega}(D^{\alpha}u) \quad and \quad ||u||_{1,\varphi,\Omega} = \inf\{\lambda > 0 : \overline{\varrho}_{\varphi,\Omega}(\frac{u}{\lambda}) \leq 1\}$$

for $u \in W^1L_{\varphi}(\Omega)$, these functionals are a convex modular and a norm on $W^1L_{\varphi}(\Omega)$, respectively, and the pair $\langle W^1L_{\varphi}(\Omega), ||u||_{1,\varphi,\Omega} \rangle$ is a Banach space if φ satisfies the following condition [19]:

there exists a constant
$$c > 0$$
 such that $\inf_{x \in \Omega} \varphi(x, 1) \ge c$.

The spaces $W^1L_{\varphi}(\Omega)$ and $W^1E_{\varphi}(\Omega)$ can be identified with subspaces of the product of n+1 copies of $L_{\varphi}(\Omega)$. Denoting this product by ΠL_{φ} , we will use the weak topologies $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ and $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$.

The space $W_0^1 E_{\varphi}(\Omega)$ is defined as the (norm) closure of the Schwartz space $D(\Omega)$ in $W^1 E_{\varphi}(\Omega)$, and the space $W_0^1 L_{\varphi}(\Omega)$ as the $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$ closure of $D(\Omega)$ in $W^1 L_{\varphi}(\Omega)$. The following spaces of distribution will also be used:

$$W^{-1}L_{\psi}(\Omega) = \{ f \in D'(\Omega); \quad f = \sum_{|\alpha| \le 1} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} \quad with \quad f_{\alpha} \in L_{\psi}(\Omega) \}$$

and

$$W^{-1}E_{\psi}(\Omega) = \{ f \in D'(\Omega); \quad f = \sum_{|\alpha| \le 1} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} \quad with \quad f_{\alpha} \in E_{\psi}(\Omega) \}$$

If $\psi(x,t)$ has the Δ_2 - condition, then the space $D(\Omega)$ is dense in $W_0^1 L_{\varphi}(\Omega)$ for the topology $\sigma(\Pi L_{\varphi}(\Omega), \Pi L_{\psi}(\Omega))$. If $\psi(x,t)$ has the Δ_2 - condition, then the space $D(\Omega)$ is dense in $W_0^1 L_{\varphi}(\Omega)$ for the topology $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$ (see corollary 1 of [12]).

3 Essential assumptions

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$, and $\varphi(x,t)$ be a Musielak-Orlicz function. We set $\psi(x,t)$ the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x,t)$, we assume here that $\psi(x,t)$ satisfying the Δ_2 -condition near infinity, then $L_{\psi}(\Omega) = E_{\psi}(\Omega)$. Let $\gamma(x,t)$ be a Musielak-Orlicz function such that $\gamma \prec \prec \varphi$, and there exists a Orlicz function M(t) such that

$$M(t) \le ess \inf_{x \in \Omega} \varphi(x, t)$$
 a.e. in Ω . (3.1)

We consider a Leray-Lions operator $A:D(A)\subset W^1_0L^\varphi(\Omega)\to W^{-1}L^\psi(\Omega)$ (not defined everywhere) given by

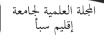
$$A(u) = -\text{div } a(x, u, \nabla u)$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a *Carathéodory* function (measurable with respect to x in Ω for every (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$, and continuous with respect to (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$ for almost every x in Ω) which satisfies the following conditions

$$|a(x,s,\xi)| \le K(x) + k_1 \psi_x^{-1}(\gamma(x,k_2|s|)) + k_3 \psi_x^{-1}(\varphi(x,k_4|\xi|)), \tag{3.2}$$

$$(a(x,s,\xi) - a(x,s,\xi^*)) \cdot (\xi - \xi^*) > 0 \quad \text{for} \quad \xi \neq \xi^*, \tag{3.3}$$

$$a(x, s, \xi) \cdot \xi \ge \alpha \cdot \varphi(x, \frac{|\xi|}{\lambda}),$$
 (3.4)



د. محمد علي محسن الحومي – د. بسام عبد القادر عاتق الحمزة

for a.e. $x \in \Omega$ and all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$, where K(x) is a nonnegative function lying in $E_{\psi}(\Omega)$ and $\alpha, \lambda > 0$ and $k_1, k_2, k_3, k_4 \geq 0$.

The nonlinear terms $g(x, s, \xi)$ is a $Carath\'{e}odory$ functions satisfying

$$|g(x,s,\xi)| \le c(x) + b(|s|)\varphi\left(x,\frac{|\xi|}{\lambda}\right),\tag{3.5}$$

where $b(\cdot): \mathbb{R}^+ \longmapsto \mathbb{R}^+$ is a continuous and non-decreasing function such that $b(\cdot) \in L^1(\mathbb{R})$. The nonnegative function $c(x) \in L^1(\Omega)$ and $\lambda > 0$.

We consider the problem

$$-\operatorname{div} a(x, u, \nabla u) + g(x, u, \nabla u) = f \quad \text{in} \quad \Omega, \tag{3.6}$$

with $f \in L^1(\Omega)$.

4 Some technical Lemmas

We present here some lemmas, which will be used later in order to prove the existence theorem:

Lemma 4.1 [8] Let Ω be an open subset of \mathbb{R}^N with finite measure. Let φ , ψ and γ be Musielak functions such that $\gamma \prec \prec \psi$, and let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$|f(x,s)| \le c(x) + k_1 \psi_x^{-1} \varphi(x, k_2|s|)$$
 (4.1)

Lemma 4.2 Let (f_n) , $f \subset L^1(\Omega)$ such that $f_n \geq 0$ a.e. in Ω and $f_n \to f$ a.e. in Ω , with

$$\int_{\Omega} f_n dx \longrightarrow \int_{\Omega} f dx.$$

Then $f_n \to f$ strongly in $L^1(\Omega)$.

Lemma 4.3 Assuming that (3.2) - (3.4) holds, and let $(u_n)_n$ be a sequence in $W_0^1 L_{\varphi}(\Omega)$ such that

- (i) $u_n \rightharpoonup u$ weakly in $W_0^1 L_{\varphi}(\Omega)$ for $\sigma(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega))$,
- (ii) $(a(x, u_n, \nabla u_n))_n$ is bounded in $(L_{\psi}(\Omega))^N$,
- (iii) Let $\Omega_s = \{x \in \Omega, |\nabla u| \le s\}$ and χ_s his characteristic function, with

$$\int_{\Omega} (a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u \chi_s)) \cdot (\nabla u_n - \nabla u \chi_s) \, dx \longrightarrow 0 \quad as \quad n, s \to \infty,$$
 (4.2)

then $\varphi(x, |\nabla u_n|) \longrightarrow \varphi(x, |\nabla u|)$ in $L^1(\Omega)$ for a subsequence.

Proof

Taking $s \ge r > 0$, we have:

$$0 \leq \int_{\Omega_{r}} (a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u)) \cdot (\nabla u_{n} - \nabla u) dx$$

$$\leq \int_{\Omega_{s}} (a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u)) \cdot (\nabla u_{n} - \nabla u) dx$$

$$= \int_{\Omega_{s}} (a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u\chi_{s})) \cdot (\nabla u_{n} - \nabla u\chi_{s}) dx$$

$$\leq \int_{\Omega} (a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u\chi_{s})) \cdot (\nabla u_{n} - \nabla u\chi_{s}) dx.$$

$$(4.3)$$

Dr. Mohammed Ali Al-Hawmi - Dr. Bassam Abdulgader AL-Hamzah

thanks to (4.2), we obtain

$$\lim_{n \to \infty} \int_{\Omega_r} (a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u)) \cdot (\nabla u_n - \nabla u) \, dx = 0. \tag{4.4}$$

Using the same argument as in (3.5), we claim that,

$$\nabla u_n \longrightarrow \nabla u$$
 a.e. in Ω . (4.5)

On the other hand, we have

$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \, dx = \int_{\Omega} (a(x, u_n, \nabla u_n) - a(x, u_n, \nabla u \chi_s)) \cdot (\nabla u_n - \nabla u \chi_s) \, dx
+ \int_{\Omega} a(x, u_n, \nabla u \chi_s) \cdot (\nabla u_n - \nabla u \chi_s) \, dx
+ \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u \chi_s \, dx.$$
(4.6)

For the second term on the right hand side of (4.6), we have $L_{\psi}(\Omega) = E_{\psi}(\Omega)$, $a(x, u_n, \nabla u \chi_s) \rightarrow a(x, u, \nabla u \chi_s)$ in $(E_{\psi}(\Omega))^N$ for the modular convergence, and $\nabla u_n \rightharpoonup \nabla u$ in $(L_{\varphi}(\Omega))^N$ for $\sigma(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega))$, then

$$\lim_{s,n\to\infty} \int_{\Omega} a(x,u_n,\nabla u\chi_s) \cdot (\nabla u_n - \nabla u\chi_s) \, dx = \lim_{s\to\infty} \int_{\Omega} a(x,u,\nabla u\chi_s) \cdot (\nabla u - \nabla u\chi_s) \, dx$$
$$= \lim_{s\to\infty} \int_{\Omega/\Omega_s} a(x,u,0) \cdot \nabla u \, dx = 0. \tag{4.7}$$

Concerning the last term on the right hand of (4.6), since $(a(x, u_n, \nabla u_n))_n$ is bounded in $(E_{\psi}(\Omega))^N$ and using (4.5), we obtain

$$a(x, u_n, \nabla u_n) \to a(x, u, \nabla u)$$
 weakly in $(E_{\psi}(\Omega))^N$ for $\sigma(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega))$,

which implies that

$$\lim_{s,n\to\infty} \int_{\Omega} a(x,u_n,\nabla u_n) \cdot \nabla u \chi_s \, dx = \lim_{s\to\infty} \int_{\Omega} a(x,u,\nabla u) \cdot \nabla u \chi_s \, dx$$
$$= \int_{\Omega} a(x,u,\nabla u) \cdot \nabla u \, dx. \tag{4.8}$$

By combining (4.6) - (4.8) and thanks to (4.2), we conclude that

$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n \, dx \longrightarrow \int_{\Omega} a(x, u, \nabla u) \cdot \nabla u \, dx \quad \text{as} \quad n \to \infty.$$
 (4.9)

On the other hand, we have $\varphi(x, \frac{|\nabla u_n|}{\lambda}) \geq 0$ and $\varphi(x, \frac{|\nabla u_n|}{\lambda}) \to \varphi(x, \frac{|\nabla u|}{\lambda})$ a.e. in Ω . Using the Fatou's Lemma, we obtain

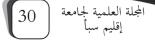
$$\int_{\Omega} \varphi(x, \frac{|\nabla u|}{\lambda}) \, dx \le \liminf_{n \to \infty} \int_{\Omega} \varphi(x, \frac{|\nabla u_n|}{\lambda}) \, dx. \tag{4.10}$$

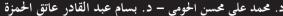
Moreover, since $a(x, u_n, \nabla u_n) \cdot \nabla u_n - \alpha \varphi(x, \frac{|\nabla u_n|}{\lambda}) \ge 0$ and

$$a(x, u_n, \nabla u_n) \cdot \nabla u_n - \alpha \varphi(x, \frac{|\nabla u_n|}{\lambda}) \longrightarrow a(x, u, \nabla u) \cdot \nabla u - \alpha \varphi(x, \frac{|\nabla u|}{\lambda})$$
 a.e. in Ω ,

In view of Fatou's Lemma, we get

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla u - \alpha \varphi(x, \frac{|\nabla u|}{\lambda}) \, dx \le \liminf_{n \to \infty} \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n - \alpha \varphi(x, \frac{|\nabla u_n|}{\lambda}) \, dx,$$





using (4.9), we obtain

$$\int_{\Omega} \varphi(x, \frac{|\nabla u|}{\lambda}) \, dx \ge \limsup_{n \to \infty} \int_{\Omega} \varphi(x, \frac{|\nabla u_n|}{\lambda}) \, dx. \tag{4.11}$$

By combining (4.10) and (4.11), we deduce

$$\int_{\Omega} \varphi(x, \frac{|\nabla u_n|}{\lambda}) dx \longrightarrow \int_{\Omega} \varphi(x, \frac{|\nabla u|}{\lambda}) dx \quad \text{as} \quad n \to \infty,$$
(4.12)

Using the Lemma 4.2, we conclude that

$$\varphi(x, \frac{|\nabla u_n|}{\lambda}) \longrightarrow \varphi(x, \frac{|\nabla u|}{\lambda}) \quad \text{in} \quad L^1(\Omega),$$
 (4.13)

which finishes our proof.

5 Main results

Let k > 0, we define the truncation function $T_k(\cdot) : \mathbb{R} \longmapsto \mathbb{R}$, by

$$T_k(s) = \begin{cases} s & \text{if } |s| \le k, \\ k \frac{s}{|s|} & \text{if } |s| > k. \end{cases}$$

Definition 5.1 A measurable function u is called an entropy solution of the strongly nonlinear problem (3.6) if

$$T_k(u) \in W_0^1 L_{\varphi}(\Omega), \qquad q(x, u, \nabla u) \in L^1(\Omega),$$

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - \nu) \, dx + \int_{\Omega} g(x, u, \nabla u) T_k(u - \nu) \, dx = \int_{\Omega} f T_k(u - \nu) \, dx, \tag{5.1}$$

for any $\nu \in W_0^1 L_{\omega}(\Omega) \cap L^{\infty}(\Omega)$,

Theorem 5.1 Assuming that (3.2) - (3.5) holds and $f \in L^1(\Omega)$, then the problem (3.6) has at least one entropy solution.

Proof of the Theorem 5.1.

Step 1: Approximate problems.

Let $(f_n)_{n\in\mathbb{N}}\in W^{-1}E_{\psi}(\Omega)\cap L^{\infty}(\Omega)$ be a sequence of smooth functions such that $f_n\to f$ in $L^1(\Omega)$ and $|f_n|\leq |f|$ (for example $f_n=T_n(f)$). We consider the approximate problem

$$-\operatorname{div} a(x, u_n, \nabla u_n) + g_n(x, u_n, \nabla u_n) = f_n, \tag{5.2}$$

where

$$g_n(x, s, \xi) = \frac{g(x, s, \xi)}{1 + \frac{1}{n} |g(x, s, \xi)|}$$
 for $n \in \mathbb{N}^*$.

Note that

$$|g_n(x, s, \xi)| \le |g(x, s, \xi)|$$
 and $|g_n(x, s, \xi)| \le n$.

Since $g_n(x, s, \xi)$ is bounded, there exists at least one weak solution $u_n \in W_0^1 L_{\varphi}(\Omega)$ of equation (5.2) (see. Theorem 5 of [12]).

Dr. Mohammed Ali Al-Hawmi - Dr. Bassam Abdulgader AL-Hamzah

Step 2: A priori estimates.

We define

$$B(s) = \frac{1}{\alpha} \int_0^s b(|\tau|) d\tau.$$

Note that, since the function $b(\cdot)$ is integrable on \mathbb{R} , then $0 \leq B(\infty) := \frac{1}{\alpha} \int_0^{+\infty} b(|t|) dt$ is finite. Thus, taking $T_k(u_n)e^{B(|u_n|)} \in W_0^1L_{\varphi}(\Omega)$ as a test function in (5.2), we get

$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla T_k(u_n) e^{B(|u_n|)} dx + \frac{1}{\alpha} \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla u_n b(|u_n|) |T_k(u_n)| e^{B(|u_n|)} dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n) e^{B(|u_n|)} dx = \int_{\Omega} f_n T_k(u_n) e^{B(|u_n|)} dx,$$

Thanks to (3.4) and (3.5), we obtain

$$\alpha \int_{\{|u_n| \le k\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) e^{B(|u_n|)} dx + \int_{\Omega} \varphi(x, \frac{|\nabla u_n|}{\lambda}) b(|u_n|) |T_k(u_n)| e^{B(|u_n|)} dx$$

$$\leq \int_{\Omega} |c(x)| |T_k(u_n)| e^{B(|u_n|)} dx + \int_{\Omega} b(|u_n|) \varphi(x, \frac{|\nabla u_n|}{\lambda}) |T_k(u_n)| e^{B(|u_n|)} dx + \int_{\Omega} f_n T_k(u_n) e^{B(|u_n|)} dx,$$

it follows that

$$\alpha \int_{\{|u_n| \leq k\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) e^{B(|u_n|)} \, dx \leq k e^{B(\infty)} \int_{\Omega} |c(x)| \, dx + k e^{B(\infty)} \int_{\Omega} |f(x)| \, dx.$$

Then, there exists a constant C_1 that does not depend on k and n such that

$$\int_{\Omega} \varphi(x, \frac{|\nabla T_k(u_n)|}{\lambda}) dx \le kC_1. \tag{5.3}$$

Thus $(T_k(u_n))_n$ is bounded in $W_0^1L_{\varphi}(\Omega)$, uniformly in n, then there exists a subsequence still denoted $(T_k(u_n))_{n\in\mathbb{N}}$ and $v_k\in W_0^1L_{\varphi}(\Omega)$ such that

$$T_k(u_n) \rightharpoonup v_k$$
 weakly in $W_0^1 L_{\omega}(\Omega)$ for $\sigma(\Pi L_{\omega}, \Pi E_{\psi}) = \sigma(\Pi L_{\omega}, \Pi L_{\psi})$ (5.4)

then

$$T_k(u_n) \to v_k$$
 strongly in $E_{\varphi}(\Omega)$ and a.e in Ω . (5.5)

Step 3: Convergence in measure of u_n

Thanks to (3.1), we have

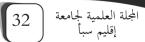
$$M(t) \le ess \inf_{x \in \Omega} \varphi(x, t)$$
 with $\lim_{t \to 0} \frac{M(t)}{t} = 0$ and $\lim_{t \to \infty} \frac{M(t)}{t} = \infty$.

Then, $\varphi(x,t)$ dominate M(t) near infinity. By Lemma 5.7 of [16], there exists two positive constants C_2 and C_3 , and a function $q(\cdot) \in L^1(\Omega)$ such that

$$C_2 \int_{\Omega} M(|T_k(u_n)|) \, dx + \int_{\Omega} q(x) \, dx \le \int_{\Omega} M(C_3 \frac{|\nabla T_k(u_n)|}{\lambda}) + q(x) \, dx \le \int_{\Omega} \varphi(x, \frac{|\nabla T_k(u_n)|}{\lambda}) \, dx.$$

So, in virtue of (5.3), we obtain

$$\int_{\Omega} M(|T_k(u_n)|) \, dx \le kC_4 \quad \text{for} \quad k \ge 1.$$
 (5.6)



د. محمد على محسن الحومي – د. بسام عبد القادر عاتق الحمزة

Then, we deduce that,

$$\begin{split} M(k) \ \mathrm{meas}(\{|u_n|>k\}) &= \int_{\{|u_n|>k\}} M(|T_k(u_n)|) \ dx \\ &\leq \int_{\Omega} M(|T_k(u_n)|) \ dx \\ &\leq kC_4. \end{split}$$

Hence,

$$\operatorname{meas}(\{|u_n| > k\}) = \frac{kC_4}{M(k)} \longrightarrow 0 \quad \text{as} \quad k \to +\infty.$$
(5.7)

For all $\delta > 0$, we have

$$\max\{|u_n - u_m| > \delta\} \le \max\{|u_n| > k\} + \max\{|u_m| > k\} + \max\{|T_k(u_n) - T_k(u_m)| > \delta\}.$$

Let $\varepsilon > 0$, using (5.7) we may choose $k = k(\varepsilon)$ large enough such that

$$\max\{|u_n| > k\} \le \frac{\varepsilon}{3}$$
 and $\max\{|u_m| > k\} \le \frac{\varepsilon}{3}$. (5.8)

Moreover, in view of (5.5) we have $T_k(u_n) \to v_k$ strongly in $E_{\varphi}(\Omega)$, then, we can assume that $(T_k(u_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in measure. Thus,

$$\operatorname{meas}\{|T_k(u_n) - T_k(u_m)| > \delta\} \le \frac{\varepsilon}{3} \quad \text{for all } m, n \ge n_0(\delta, \varepsilon).$$
 (5.9)

By combining (5.8) - (5.9), we conclude that

$$\forall \delta, \varepsilon > 0 \quad \text{there exists} \quad n_0 = n_0(\delta, \varepsilon) \quad \text{such that} \quad \operatorname{meas}\{|u_n - u_m| > \delta\} \leq \varepsilon \quad \ \forall n, m \geq n_0(\delta, \varepsilon),$$

it follows that $(u_n)_n$ is a Cauchy sequence in measure, then converges almost everywhere, for a subsequence, to some measurable function u. Consequently, we have

$$T_k(u_n) \rightharpoonup T_k(u)$$
 weakly in $W_0^1 L_{\varphi}(\Omega)$ for $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$

it follows that

$$T_k(u_n) \to T_k(u)$$
 strongly in $E_{\varphi}(\Omega)$. (5.10)

Step 4: Strong convergence of truncations.

In the sequel, we denote by $\varepsilon_i(n)$, $i=1,2,\ldots$ various real-valued functions of real variables that converge to 0 as n tends to infinity.

For h > k > 0, we set

$$b_k := \max\{b(s) : |s| \le k\}$$

Let $\phi_k(s) = s \exp(\gamma s^2)$ with $\gamma = \left(\frac{b_k}{\alpha}\right)^2$, it's clear that

$$\phi'_k(s) - \frac{2b_k}{\alpha} |\phi_k(s)| \ge \frac{1}{2} \quad \forall s \in \mathbb{R}.$$

Taking M = 4k + h, we define

$$z_n := u_n - T_h(u_n) + T_k(u_n) - T_k(u)$$
 and $\omega_n := T_{2k}(z_n)$.

Using $\phi_k(\omega_n)e^{B(|u_n|)} \in W_0^1L_{\varphi}(\Omega)$ as a test function in (5.2), we obtain

$$\begin{split} &\int_{\Omega} a(x,u_n,\nabla u_n) \cdot \nabla \omega_n \phi_k'(\omega_n) e^{B(|u_n|)} \, dx + \frac{1}{\alpha} \int_{\Omega} a(x,u_n,\nabla u_n) \cdot \nabla u_n \phi_k(\omega_n) b(|u_n|) \mathrm{sign}(u_n) e^{B(|u_n|)} \, dx \\ &+ \int_{\Omega} H_n(x,u_n,\nabla u_n) \phi_k(\omega_n) e^{B(|u_n|)} \, dx = \int_{\Omega} f_n \phi_k(\omega_n) e^{B(|u_n|)} \, dx. \end{split}$$

Dr. Mohammed Ali Al-Hawmi – Dr. Bassam Abdulgader AL-Hamzah

Since $\phi_k(\omega_n)$ have the same sign as u_n on the set $\{|u_n| > k\}$, then

$$\begin{split} &\frac{1}{\alpha} \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n \phi_k(\omega_n) b(|u_n|) \mathrm{sign}(u_n) e^{B(|u_n|)} \, dx \\ &= \frac{1}{\alpha} \int_{\{|u_n| > k\}} a(x, u_n, \nabla u_n) \cdot \nabla u_n b(|u_n|) |\phi_k(\omega_n)| e^{B(|u_n|)} \, dx \\ &\geq \int_{\{|u_n| > k\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) b(|u_n|) |\phi_k(\omega_n)| e^{B(|u_n|)} \, dx, \end{split}$$

Also, we have $\nabla \omega_n = 0$ on $\{|u_n| \geq M\}$ and using (3.5) we conclude that

$$\begin{split} &\int_{\{|u_n|\leq M\}} a(x,T_M(u_n),\nabla T_M(u_n))\cdot \nabla \omega_n \phi_k'(\omega_n) e^{B(|u_n|)} \ dx \\ &-\int_{\{|u_n|\leq k\}} a(x,T_k(u_n),\nabla T_k(u_n))\cdot \nabla T_k(u_n) \frac{b(|u_n|)}{\alpha} |\phi_k(\omega_n)| e^{B(|u_n|)} \ dx \\ &-\int_{\{|u_n|\leq k\}} \varphi(x,\frac{|\nabla u_n|}{\lambda}) b(|u_n|) |\phi_k(\omega_n)| e^{B(|u_n|)} \ dx \\ &\leq e^{B(\infty)} \int_{\Omega} (|f_n(x)|+|c(x)|) |\phi_k(\omega_n)| \ dx. \end{split}$$

We have $\omega_n = T_k(u_n) - T_k(u)$ on $\{|u_n| \le k\}$, we conclude that

$$\int_{\{|u_n| \le k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(u)) \phi_k'(\omega_n) e^{B(|u_n|)} dx
+ \int_{\{k < |u_n| \le M\}} a(x, T_M(u_n), \nabla T_M(u_n)) \cdot \nabla \omega_n \phi_k'(\omega_n) e^{B(|u_n|)} dx
- \frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\phi_k(\omega_n)| e^{B(|u_n|)} dx
\le e^{B(\infty)} \int_{\Omega} (|f_n(x)| + |c(x)|) |\phi_k(\omega_n)| dx.$$
(5.11)

Concerning the second term on the left-hand side of (5.11), we have

$$\begin{split} & \int_{\{k < |u_n| \le M\}} a(x, T_M(u_n), \nabla T_M(u_n)) \cdot \nabla \omega_n \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ & = \int_{\{k < |u_n| \le M\} \cap \{|z_n| \le 2k\}} a(x, T_M(u_n), \nabla T_M(u_n)) \cdot \nabla z_n \, \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ & \ge -e^{B(\infty)} \phi_k'(2k) \int_{\{k < |u_n| \le M\}} |a(x, T_M(u_n), \nabla T_M(u_n))| \, |\nabla T_k(u)| \, dx, \end{split}$$

We have $\nabla T_k(u) \in (L_{\varphi}(\Omega))^N$, and since $(|a(x,T_M(u_n),\nabla T_M(u_n))|)_n$ is bounded in $L_{\psi}(\Omega) = E_{\psi}(\Omega)$, there exists $\zeta \in E_{\psi}(\Omega)$ such that $|a(x,T_M(u_n),\nabla T_M(u_n))| \to \zeta$ weakly in $E_{\psi}(\Omega)$ for $\sigma(E_{\psi}(\Omega),L_{\varphi}(\Omega))$. Therefore,

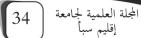
$$\int_{\{k < |u_n| \le M\}} |a(x, T_M(u_n), \nabla T_M(u_n))| |\nabla T_k(u)| dx \longrightarrow \int_{\{k < |u| \le M\}} \zeta |\nabla T_k(u)| dx = 0.$$
 (5.12)

It follows that

$$\int_{\{k<|u_n|\leq M\}} a(x, T_M(u_n), \nabla T_M(u_n)) \cdot \nabla \omega_n \phi_k'(\omega_n) e^{B(|u_n|)} dx \geq \varepsilon_1(n).$$
 (5.13)

Then, using (5.11), we deduce that

$$\int_{\{|u_n| \le k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(u)) \phi_k'(\omega_n) e^{B(|u_n|)} dx
- \frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\phi_k(\omega_n)| e^{B(|u_n|)} dx
\le e^{B(\infty)} \int_{\Omega} (|f_n(x)| + |c(x)|) |\phi_k(\omega_n)| dx + \varepsilon_2(n).$$
(5.14)



Now, we will study each terms on the left-hand side of (5.14).

First estimate:

We define $\Omega_s = \{x \in \Omega : |\nabla T_k(u(x))| \le s\}$ and denote by χ_s the characteristic function of Ω_s . For the first term on the left-hand side of (5.14), we have

$$\begin{split} &\int_{\{|u_n| \leq k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(u)) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &= \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(u) \chi_s) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &\quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u) \chi_s - \nabla T_k(u)) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &\quad + \int_{\{|u_n| > k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi_s) \right) \cdot (\nabla T_k(u_n) - \nabla T_k(u) \chi_s) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &\quad + \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi_s) \cdot (\nabla T_k(u_n) - \nabla T_k(u) \chi_s) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &\quad - \int_{\Omega \setminus \Omega_s} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &\quad + \int_{\{|u_n| > k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx. \end{split}$$

For the second term on the right hand side of (5.15), we have $a(x, T_k(u_n), \nabla T_k(u)\chi_s) \to a(x, T_k(u), \nabla T_k(u)\chi_s)$ in $(E_{\psi}(\Omega))^N$, and since $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ weakly in $(L_{\varphi}(\Omega))^N$ for $\sigma(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega))$, then

$$\lim_{n \to \infty} \int_{\Omega} a(x, T_{k}(u_{n}), \nabla T_{k}(u)\chi_{s}) \cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi_{s}) \phi'_{k}(\omega_{n}) e^{B(|u_{n}|)} dx$$

$$= \int_{\Omega} a(x, T_{k}(u), \nabla T_{k}(u)\chi_{s}) \cdot (\nabla T_{k}(u) - \nabla T_{k}(u)\chi_{s}) \phi'_{k}(T_{2k}(u - T_{h}(u))) e^{B(|u|)} dx$$

$$= \int_{\Omega \setminus \Omega_{s}} a(x, T_{k}(u), 0) \cdot \nabla T_{k}(u) \phi'_{k}(T_{2k}(u - T_{h}(u))) e^{B(|u|)} dx.$$
(5.16)

Concerning the third term on the right hand side of (5.15), since $(a(x, T_k(u_n), \nabla T_k(u_n)))_n$ is bounded in $(E_{\psi}(\Omega))^N$, there exists $\eta \in (E_{\psi}(\Omega))^N$ such that $a(x, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup \eta$ weakly in $(E_{\psi}(\Omega))^N$ for $\sigma(\Pi E_{\psi}(\Omega), \Pi L_{\omega}(\Omega))$, it follows that

$$\lim_{n \to \infty} \int_{\Omega \setminus \Omega_s} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \phi_k'(\omega_n) e^{B(|u_n|)} dx$$

$$= \int_{\Omega \setminus \Omega_s} \eta \cdot \nabla T_k(u) \phi_k'(T_{2k}(u - T_h(u))) e^{B(|u|)} dx.$$
(5.17)

For the last term of (5.15), we have

$$\lim_{n \to \infty} \int_{\{|u_n| > k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \phi_k'(\omega_n) e^{B(|u_n|)} dx$$

$$= \int_{\{|u| > k\}} \eta \cdot \nabla T_k(u) \phi_k'(T_{2k}(u - T_h(u))) e^{B(|u|)} dx = 0.$$
(5.18)

By combining (5.16) - (5.18), we deduce that

$$\begin{split} &\int_{\{|u_n| \leq k\}} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(u)) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &= \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot (\nabla T_k(u_n) - \nabla T_k(u)\chi_s) \phi_k'(\omega_n) e^{B(|u_n|)} \, dx \\ &+ \int_{\Omega \setminus \Omega_s} \left(a(x, T_k(u), 0) - \eta \right) \cdot \nabla T_k(u) \phi_k'(T_{2k}(u - T_h(u))) e^{B(|u|)} \, dx + \varepsilon_3(n) \end{split}$$
 (5.19)

المجلد(3) العدد(2) مايو 2022م https://doi.org/10.54582/TSJ.2.2.18 المجلة العلمية لجامعة إقليم سبأ

35

Dr. Mohammed Ali Al-Hawmi – Dr. Bassam Abdulgader AL-Hamzah

Second estimate :

For the second term on the right-hand side of (5.14), we have

$$\frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$= \frac{2b_k}{\alpha} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right) |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$+ \frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)\chi_s) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right) |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$+ \frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u)\chi_s) \cdot \left(\nabla T_k(u)\chi_s |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$+ \frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u)\chi_s |\phi_k(\omega_n)| e^{B(|u_n|)} dx.$$
(5.20)

For the second term on the right-hand side of (5.20), we have h > k > 0, similarly to (5.16) we obtain

$$\lim_{n \to \infty} \int_{\Omega} a(x, T_{k}(u_{n}), \nabla T_{k}(u)\chi_{s}) \cdot (\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi_{s}) |\phi_{k}(\omega_{n})| e^{B(|u_{n}|)} dx$$

$$= \int_{\Omega} a(x, T_{k}(u), \nabla T_{k}(u)\chi_{s}) \cdot (\nabla T_{k}(u) - \nabla T_{k}(u)\chi_{s}) |\phi_{k}(T_{2k}(u - T_{h}(u)))| e^{B(|u|)} dx$$

$$= \int_{\Omega \setminus \Omega_{s}} a(x, T_{k}(u), 0) \cdot \nabla T_{k}(u) |\phi_{k}(T_{2k}(u - T_{h}(u)))| e^{B(|u|)} dx = 0.$$
(5.21)

Concerning the third term on the right-hand side of (5.20), we have

$$\lim_{n \to \infty} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u) \chi_s |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$= \int_{\Omega} \eta \cdot \nabla T_k(u) \chi_s |\phi_k(T_{2k}(u - T_h(u)))| e^{B(|u|)} dx = 0.$$
(5.22)

It follows that

$$\frac{2b_k}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$= \frac{2b_k}{\alpha} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right) |\phi_k(\omega_n)| e^{B(|u_n|)} dx$$

$$+ \varepsilon_4(n). \tag{5.23}$$

By combining (5.14), (5.19) and (5.23), we conclude that

$$\frac{1}{2} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right) dx$$

$$\leq \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right)$$

$$\times \left(\phi'_k(\omega_n) - \frac{2b_k}{\alpha} |\phi_k(\omega_n)| \right) e^{B(|u_n|)} dx$$

$$\leq \int_{\Omega \setminus \Omega_s} \left(a(x, T_k(u), 0) - \eta \right) \cdot \nabla T_k(u) \phi'_k(T_{2k}(u - T_h(u))) e^{B(|u|)} dx$$

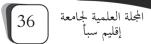
$$+ e^{B(\infty)} \int_{\Omega} (|f(x)| + |c(x)|) |\phi_k(T_{2k}(u - T_h(u)))| dx + \varepsilon_5(n). \tag{5.24}$$

We have $|\phi_k(T_{2k}(u-T_h(u)))| \rightharpoonup 0$ weak-* in $L^{\infty}(\Omega)$, then

$$\int_{\Omega} (|f(x)| + |c(x)|) |\phi_k(T_{2k}(u - T_h(u)))| dx \longrightarrow 0 \quad \text{as} \quad h \to \infty,$$

and since $(a(x, T_k(u), 0) - \eta) \cdot \nabla T_k(u) \in L^1(\Omega)$, then

$$\int_{\Omega \setminus \Omega_s} \left(a(x, T_k(u), 0) - \eta \right) \cdot \nabla T_k(u) \phi_k'(T_{2k}(u - T_h(u))) e^{B(|u|)} dx \longrightarrow 0 \quad \text{as} \quad s \to \infty.$$



على محسن الحومى - د. بسام عبد القادر عاتق الحمزة

Therefore, we conclude that

$$\lim_{n,s\to\infty} \int_{\Omega} \left(a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s) \right) \cdot \left(\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right) dx = 0. \quad (5.25)$$

In view of Lemma 4.3, we deduce that

$$\nabla u_n \longrightarrow \nabla u$$
 a.e. in Ω , (5.26)

and

$$\varphi(x, \frac{|\nabla T_k(u_n)|}{\lambda}) \longrightarrow \varphi(x, \frac{|\nabla T_k(u)|}{\lambda}) \quad \text{in} \quad L^1(\Omega).$$
 (5.27)

Step 4: The equi-integrability of $q_n(x, u_n, \nabla u_n)$

In order to pass to the limit in the approximate problem, we shall show that

$$g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \quad \text{in} \quad L^1(\Omega).$$
 (5.28)

Thanks to Vitali's theorem, it suffices to prove that $g_n(x, u_n, \nabla u_n)$ is uniformly equi-integrable. We set

$$\overline{B}(s) = \frac{2}{\alpha} \int_0^s b(|\tau|) d\tau.$$

By taking $T_1(u_n - T_h(u_n))e^{\overline{B}(|u_n|)}$ as a test function in (5.2), we have

$$\begin{split} &\int_{\Omega} a(x,u_n,\nabla u_n)\cdot \nabla T_1(u_n-T_h(u_n))e^{\overline{B}(|u_n|)}\,dx\\ &+\frac{2}{\alpha}\int_{\Omega} a(x,u_n,\nabla u_n)\cdot \nabla u_nb(|u_n|)|T_1(u_n-T_h(u_n))|e^{\overline{B}(|u_n|)}\,dx\\ &+\int_{\Omega} g_n(x,u_n,\nabla u_n)T_1(u_n-T_h(u_n))e^{\overline{B}(|u_n|)}\,dx\\ &=\int_{\Omega} f_nT_1(u_n-T_h(u_n))e^{\overline{B}(|u_n|)}\,dx. \end{split}$$

According to (3.4) and (3.5), we obtain

$$\alpha \int_{\{h \le |u_n| < h + 1\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) e^{\overline{B}(|u_n|)} dx + 2 \int_{\{h \le |u_n|\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) b(|u_n|) |T_1(u_n - T_h(u_n))| e^{\overline{B}(|u_n|)} dx \\
\le \int_{\{h \le |u_n|\}} (|f_n(x)| + |c(x)|) e^{\overline{B}(|u_n|)} dx + \int_{\{h \le |u_n|\}} \varphi(x, \frac{|\nabla u_n|}{\lambda}) |T_1(u_n - T_h(u_n))| b(|u_n|) e^{\overline{B}(|u_n|)} dx, \tag{5.29}$$

it follows that

$$\int_{\{h+1\leq |u_n|\}} b(|u_n|)\varphi(x,\frac{|\nabla u_n|}{\lambda})\,dx \leq e^{\overline{B}(\infty)} \int_{\{h\leq |u_n|\}} (|f(x)|+|c(x)|)\,dx.$$

Thus, for all $\eta > 0$, there exists $h(\eta) \ge 1$ such that

$$\int_{\{h(\eta) \le |u_n|\}} b(|u_n|) \varphi(x, \frac{|\nabla u_n|}{\lambda}) \, dx \le \frac{\eta}{2}. \tag{5.30}$$

On the other hand, we set

$$b_{h(\eta)} := \max\{b(s) : |s| \le h(\eta)\}.$$

For any measurable subset $E \subseteq \Omega$, we have

$$\int_{E} b(|u_n|)\varphi(x, \frac{|\nabla u_n|}{\lambda}) dx \le b_{h(\eta)} \int_{E} \varphi(x, \frac{|\nabla T_{h(\eta)}(u_n)|}{\lambda}) dx + \int_{\{h(\eta) \le |u_n|\}} b(|u_n|)\varphi(x, \frac{|\nabla u_n|}{\lambda}) dx.$$

$$(5.31)$$

Dr. Mohammed Ali Al-Hawmi – Dr. Bassam Abdulgader AL-Hamzah

From (5.27), there exists $\delta(\eta) > 0$ such that, for any meas $(E) \leq \delta(\eta)$ we have

$$b_{h(\eta)} \int_{E} \varphi(x, \frac{|\nabla T_{h(\eta)}(u_n)|}{\lambda}) \, dx \le \frac{\eta}{2}. \tag{5.32}$$

Finally, by combining (5.30), (5.31) and (5.32), one easily has

$$\int_{E} b(|u_{n}|)\varphi(x, \frac{|\nabla u_{n}|}{\lambda}) dx \le \eta \quad \text{for all} \quad \text{meas}(E) \le \delta(\eta).$$
(5.33)

Using (5.12), we deduce that $(g_n(x, u_n, \nabla u_n))_n$ is equi-integrable, and since

$$g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u)$$
 a.e. in Ω ,

we conclude (5.28).

Step 5: Passage to the limit

Let $\nu \in W_0^1 L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)$, taking $T_k(u_n - \nu)$ as a test function in (5.2), we get

$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla T_k(u_n - \nu) \, dx + \int_{\Omega} H_n(x, u_n, \nabla u_n) T_k(u_n - \nu) \, dx = \int_{\Omega} f_n T_k(u_n - \nu) \, dx. \quad (5.34)$$

Choosing $M=k+\|\nu\|_{\infty}$, if $|u_n|>M$ then $|u_n-\nu|\geq |u_n|-\|\nu\|_{\infty}>k$, therefore $\{|u_n-\nu|\leq k\}\subseteq\{|u_n|\leq M\}$. Firstly, we can write the first term on the left-hand side of the above relation as

$$\int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla T_k(u_n - \nu) \, dx = \int_{\Omega} a(x, T_M(u_n), \nabla T_M(u_n)) \cdot (\nabla T_M(u_n) - \nabla \nu) \chi_{\{|u_n - \nu| \le k\}} \, dx$$

$$= \int_{\Omega} (a(x, T_M(u_n), \nabla T_M(u_n)) - a(x, T_M(u_n), \nabla \nu)) \cdot (\nabla T_M(u_n) - \nabla \nu) \chi_{\{|u_n - \nu| \le k\}} \, dx$$

$$+ \int_{\Omega} a(x, T_M(u_n), \nabla \nu) \cdot (\nabla T_M(u_n) - \nabla \nu) \chi_{\{|u_n - \nu| \le k\}} \, dx.$$
(5.35)

We have

$$(a(x,T_M(u_n),\nabla T_M(u_n))-a(x,T_M(u_n),\nabla \nu))\cdot (\nabla T_M(u_n)-\nabla \nu)\chi_{\{|u_n-\nu|\leq k\}}\\ \longrightarrow (a(x,T_M(u),\nabla T_M(u))-a(x,T_M(u),\nabla \nu))\cdot (\nabla T_M(u)-\nabla \nu)\chi_{\{|u-\nu|\leq k\}} \quad \text{a.e. in} \quad \Omega.$$
 (5.36)

According to (3.3) and Fatou's lemma, we obtain

$$\lim_{n \to \infty} \inf_{\Omega} \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla T_k(u_n - \nu) \, dx$$

$$\geq \int_{\Omega} (a(x, T_M(u), \nabla T_M(u)) - a(x, T_M(u), \nabla \nu)) \cdot (\nabla T_M(u) - \nabla \nu) \chi_{\{|u - \nu| \leq k\}} \, dx \qquad (5.37)$$

$$+ \lim_{n \to \infty} \int_{\Omega} a(x, T_M(u_n), \nabla \nu) \cdot (\nabla T_M(u_n) - \nabla \nu) \chi_{\{|u_n - \nu| \leq k\}} \, dx.$$

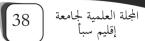
For the second term on the right-hand side of (5.37), we have $a(x,T_M(u_n),\nabla\nu)\to a(x,T_M(u),\nabla\nu)$ in $(E_\psi(\Omega))^N$, and $\nabla T_M(u_n) \rightharpoonup \nabla T_M(u)$ weakly in $(L_\varphi(\Omega))^N$ for $\sigma(\Pi L_\varphi(\Omega),\Pi E_\psi(\Omega))$, then

$$\lim_{n \to \infty} \int_{\Omega} a(x, T_M(u_n), \nabla \nu) \cdot (\nabla T_M(u_n) - \nabla \nu) \chi_{\{|u_n - \nu| \le k\}} dx$$
$$= \int_{\Omega} a(x, T_M(u), \nabla \nu) \cdot (\nabla T_M(u) - \nabla \nu) \chi_{\{|u - \nu| \le k\}} dx.$$

Therefore, we get

$$\liminf_{n \to \infty} \int_{\Omega} a(x, u_n, \nabla u_n) \cdot \nabla T_k(u_n - \nu) \, dx \geq \int_{\Omega} a(x, T_M(u), \nabla T_M(u)) \cdot (\nabla T_M(u) - \nabla \nu) \chi_{\{|u - \nu| \le k\}} \, dx$$

$$= \int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_k(u - \nu) \, dx.$$



On the other hand, being $T_k(u_n - \nu) \rightharpoonup T_k(u - \nu)$ weak- \star in $L^{\infty}(\Omega)$ and thanks to (5.28), we deduce that

$$\int_{\Omega} g_n(x, u_n, \nabla u_n) \ T_k(u_n - \nu) \ dx \longrightarrow \int_{\Omega} g(x, u, \nabla u) \ T_k(u - \nu) \ dx \tag{5.38}$$

and

$$\int_{\Omega} f_n T_k(u_n - \nu) \, dx \longrightarrow \int_{\Omega} f \, T_k(u - \nu) \, dx. \tag{5.39}$$

Hence, putting all the terms together, we conclude the proof of Theorem 5.1.

Exemple 5.1 Taking $\varphi(x,t) = |t|^{p(x)}$ for $1 < p(x) < \infty$. Let $f \in L^1(\Omega)$, we consider the following Carathéodory functions

$$a(x,u,\nabla u) = |\nabla u|^{p(x)-2}\nabla u \qquad and \qquad H(x,u,\nabla u) = e^{-|u|^2}|\nabla u|^{p(x)}.$$

It is clear that $a(x, u, \nabla u)$ and $g(x, u, \nabla u)$ verifies (3.2) – (3.4) and (3.5) respectively. In view of the Theorem 5.1, the problem

$$\begin{cases} -div(|\nabla u|^{p(x)-2}\nabla u) + e^{-|u|^2}|\nabla u|^{p(x)} = f & in \ \Omega, \\ u = 0 & on \ \partial\Omega, \end{cases}$$
(5.40)

has at least one entropy solution, i.e.

$$T_k(u) \in W_0^{1,p(x)}(\Omega)$$
 and $e^{-|u|^2} |\nabla u|^{p(x)} \in L^1(\Omega),$

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla T_k(u_n - \nu) \, dx + \int_{\Omega} e^{-|u|^2} |\nabla u|^{p(x)} T_k(u_n - \nu) \, dx = \int_{\Omega} f T_k(u_n - \nu) \, dx, \quad (5.41)$$

for any $\nu \in W_0^{1,p(x)}(\Omega) \cap L^{\infty}(\Omega)$.

References

- [1] R. A. Adams and J. F. Fournier; Sobolev spaces, 2nd edition, Pure and Applied Mathematics, 140, Academic Press, Amsterdam, 2003.
- [2] E. Azroul, A. Benkirane and M. Rhoudaf, On some strongly nonlinear elliptic problems in L1data with a nonlinearity having a constant sign in Orlicz spaces via penalization methods. Aust. J. Math. Anal. Appl. 7 (2010), no. 1, Art. 5, 1-25.
- [3] A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni and A. Youssfi, Existence of renormalized solutions for some strongly nonlinear elliptic equations in Orlicz spaces, Georgian Math. J. 22(3) (2015), 305-321.
- [4] B. Al Hamzah, N. Yebari, Global Existence in Reaction Diffusion Nonlinear Parabolic Partail Differential Equation in Image Processing, Global Journal of Advanced Engineering Technologies and Sciences. 3(5): May, 2016, 42-55.
- [5] B. Al Hamzah, N. Yebari, Global Existence for Reaction-Diffusion Systems Modeling Ions Electromigration Through Biological Membranes with Mass Control and Critical Growth with Respect to the Gradient. Topological Methods in Nonlinear Analysis, Vol. 53 No 1 (March 2019), 225-256.
- [6] M. Al-Hawmi and M. AL-Hasisi, Existence of renormalized solutions for nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces. J. Math. Comput. Sci. 12(23)(2021), 1-31.
- [7] M. Al-Hawmi, E.Azroul, H. Hjiaj and A.Touzani, Existence of entropy solutions for some anisotropic quasilinear elliptic unilateral problems, Afr. Mat. 28 (2017), 357-378.

Dr. Mohammed Ali Al-Hawmi - Dr. Bassam Abdulgader AL-Hamzah

- [8] M.AL-Hawmi, A. Benkirane, H. Hjiaj and A. Touzani, Existence and Uniqueness of Entropy Solutions for some Nonlinear Elliptic Unilateral Problems in Musielak-Orlicz-Sobolev Spaces, Ann. Univ. Craiova, Math. Computer Sci. Ser. 44(1)(2017), 1-20.
- [9] M. Al-Hawmi, Abdelmoujib Benkirane, Hassane Hjiaj and Abdelfattah Touzani, Existence of solutions for some nonlinear elliptic problems involving Mintys Lemma. Ricerche di Matematica A Journal of Pure and Applied Mathematics, (2018), 1-24.
- [10] A. Benkirane and A. Elmahi; An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Analysis 36 (1999)11-24.
- [11] A. Benkirane and A. Elmahi; Almost everywhere convergence of gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Analysis. T.M.A. 28(11)1769-1784.
- [12] A. Benkirane and M. Sidi El Vally; An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 1, 57-75.
- [13] L. Boccardo, T. Gallouet and F. Murat; A unified presentation of two existence results for problems with natural growth. Progress in partial differential equations: the Metz surveys, 2 (1992), 127-137
- [14] A. Bensoussan, L. Boccardo and F. Murat; On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincar 5 (4)(1988), 347-364.
- [15] A. Elmahi and D. Meskine; Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces. abstr. Appl. Anal. 2004, no.12, 1031-1045.
- [16] J.P. Gossez; Nonlinear elliptic boundary value prolems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
- [17] J.P. Gossez and V. Mustonen; Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), 379-392.
- [18] R. Landes, On Galerkin's method in the existence theory for quasilinear elliptic equations, J. funct. Analysis 39, 123-148 (1980).
- [19] J. Musielak; Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034 (1983).

