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Abstract

In this paper, we prove the existence of entropy Solutions for some class

of strong nonlinear elliptic problem of the type

—diva(x,u,Vu) + g(x,u,Vu) = f

In the Musielak—-Orlicz-Sobolev spaces W(I)Lq,(ﬂ) under the assumption
that ¥ (x, t), the conjugate function of the Munielak-Orlicz function
@(x, t), satisfies the A, - condition,

we assume that f € L1(2) and g(x, s, §) satisfies only some nonstandard
growth with respect to |§|.

keywords. Musielak—Orlicz-Sobolev spaces, nonlinear elliptic problem,

truncation function, entropy solutions.
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1 Introduction

Let Q be an open subset of IR". In this paper, we study the existence of solutions for strong nonlinear
elliptic problems of the form:

Au+g(z,u,Vu) = f in Q (1.1)
where A is the Leray-Lions operator defined as:
Au) = —div a(z, u, Vu)

and g(z, s,€) presents the nonlinearity of the problem (1.1).
A. Bensoussan, L. Boccardo and F. Murat [14] proved the existence of solutions for the Dirichlet
problem of the form (1.1), where g(x, s, £) satisfies :

lg(z,s,8)] < b(|s])(c(x)+|€P) (natural growth condition)
g(z,8,6).s > 0 (sign condition)

we refer also to [4, 5] for more details. A. Benkirane and A. Elmahi [10] have proved the existence
theorem of the problem (1.1) in Orlicz-Sobolev-space WL (), by assuming a sign condition and a
natural growth condition on g(z, s, &) of the form :

lg(, 5,8)| < b(|s|)(c(z) + M (%)) (M(-) is an N-function)

The N-function M(-) is supposed to satisfy the Ag-condition and the domain € of IR"™ satisfy-
ing the segment property, in order to construct a complementary system (Wg Las(Q), W Ea(€2);
WL (Q), W Eg(Q)).

In [15], A. Elmahi and D. Meskine have proved the existence of solution for the problem (1.1)
without assuming As-condition on ¢ and its conjugate fonction. In [6, 8] were studies in in Musielak-
Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of entropy solutions for the strong nonlinear
elliptic problem, by assuming that the conjugate function of Musielak-Orlicz function p(x,t) satisfies
As-condition and using corollary 1 of [12] to construct a complementary system (Wg Ly, (Q), Wi E,(€2);
WLy (Q), W=1E(2)) without consider that (2 verifies the segment property.

2 Preliminaries

In this section, we introduce some definitions and known facts about Musielak-Orlicz-Sobolev spaces.
Standard reference is [19].

2.1 Musielak-Orlicz function

Let Q be an open subset of RN (N > 2), and let ¢(x,t) be a real-valued function defined in Q x IR+

and satisfying the following conditions:

(a) ¢(z,-) is an N-function, i.e. convex, nondecreasing, continuous, ¢(x,0) = 0, ¢(z,t) > 0 for all
t>0,and :

pla,t)

x,t
lim sup plzt) =0 lim inf m——= = o0
t=0,cq t toooze

(b) ¢(-,t) is a measurable function.

A function ¢(z,t) which satisfies conditions (a) and (b) is called a Musielak-Orlicz function.
For a Musielak-Orlicz function p(z,t) we set ¢, (t) = p(z,t) and let ¢;1(t) the reciprocal function
with respect to ¢ of ¢, (1), i.e.

0z (pla, 1) = oz, 93 () = t.

For any two Musielak-Orlicz functions ¢(z,t) and v(z,t), we introduce the following ordering:

Anald dyedall 2l A $2022 gl (2)52) (3)i
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(c) If there exists two positives constants ¢ and 7" such that for almost everywhere 2 € Q :
p(z,t) <~(z,ct) for t>T,
we write ¢ < 7y, and we say that v dominate ¢ globally if T" = 0, and near infinity if 7" > 0.
(d) For every positive constant ¢ and almost everywhere x € Q, if

o(z, ct))

it
lim (sup gl ct)
t—=0" o (2, t)

=0 or lim (sup
) f*m(z-exz ~(x,t)

we write ¢ <<y at 0 or near oo respectively, and we say that ¢ increases essentially more slowly
than v at 0 or near oo respectively.
Let
W(a, 5) = sup{st — p(x, )}
>0

that is, ¥(x, t) is the Musielak-Orlicz function complementary to (or conjugate) of ¢(z,t) in the sense
of Young with respect to the variable s.

The Musielak-Orlicz function ¢(«, t) is said to satisfy the Ay—condition if, there exists & > 0 and
a nonnegative function h(-) € L1 (), such that

p(x,2t) < ko(z,t) + h(x) a.e. x €,

for large values of ¢, or for all values of ¢.

2.2 Musielak-Orlicz Lebesgue space

In the following, the measurability of a function u : Q — IR means the Lebesgue measurability. We
define the functional

opn) = [ (o fu@) do
where u : Q — IR is a measurable function. The set
K,(Q)={u:Q+~— R measurable / o, 0(u) < +oo}

is called the Musielak-Orlicz class (the generalized Orlicz class). The Musielak-Orlicz space (the
generalized Orlicz space) L, () is the vector space generated by K (£2), that is, L, (£2) is the smallest
linear space containing the set K, (£2); equivalently

L,(Q) = {u :QQ—— IR measurable / Q%gz(&::)l) < 400, for some \ > 0}.

In the space L,(12), we define the following two norms:
lillos =it (>0 /[ oo MMy g <1},
Q
which is called the Luxemburg norm, and the so-called Orlicz norm by:
oo = sup [ Jutw)eta)|de,
[lollw<1/9

where (x,t) is the Musielak-Orlicz function complementary (or conjugate) to ¢(x,t). These two
norms are equivalent [19].

The closure in L, (€2) of the bounded measurable functions with compact support in Q is denoted
by E,(Q). It is separable space and Ey(2)* = L, () [19].

We have E,(Q2) = K,(Q) if and only if K, () = L,(€) if and only if ¢ has the Ay —condition for

large values of ¢, or for all values of ¢, according to whether 2 has finite measure or not.

dnald Lol alsd 27
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2.3 Musielak-Orlicz-Sobolev space

We now turn to the Musielak-Orlicz-Sobolev space. WL, () (resp. WLE,(Q)) is the space of all
measurable functions u such that u and its distributional derivatives up to order 1 lie in L (2) (resp.
E,(Q)). Let a = (a1, az,...,a,) with nonnegative integers ;. |a| = |o1| + |az| + ... + |an| and D*u
denotes the distributional derivatives.

. _ u
%oa(w) = Y 0ea(D) and |fullip0=inf{A>0:7,q(3) <1}
lal<1

for w € WL, (), these functionals are a convex modular and a norm on WL, (€), respectively, and
the pair (WL, (Q), |Jul]1,4,0) is a Banach space if ¢ satisfies the following condition [19]:

there exists a constant ¢ >0 such that ingf2 p(z,1) >c.
z€

The spaces WL, (Q) and WIE,(Q) can be identified with subspaces of the product of n + 1
copies of L,(€2). Denoting this product by IIL,, we will use the weak topologies o(ILL,,,11Ey) and
(L, IIL ).

The space Wi E,(Q) is defined as the (norm) closure of the Schwartz space D(Q) in W!E,(Q),
and the space WL, () as the o(I1Ly, [1Ey) closure of D(€) in WL, (). The following spaces of
distribution will also be used :

WL = {f e D'Q); f= Y (-1)IIDfa with fo € Ly(Q)}

lal<1

and
WHEN(Q) ={feD'(Q); f= Y (-1)Dfo with fo€ EyQ)}
le]<1
If ¢(x, t) has the Ay — condition. then the space D(Q) is dense in W L, (€2) for the topology o (1L, (€2), IIL ().
If ¥(z,t) has the Ay— condition, then the space D(Q) is dense in WiL, () for the topology
o(I1Ly,I1Ly) (see corollary 1 of [12]).

3 Essential assumptions

Let Q be a bounded open subset of RN (N > 2), and ¢(z,t) be a Musielak-Orlicz function.
We set ¢(z,t) the Musielak-Orlicz function complementary (or conjugate) to (z,t). we assume here
that (2, t) satisfying the Ay—condition near infinity. then L, (Q) = E,(Q).
Let (x,t) be a Musielak-Orlicz function such that v << ¢, and there exists a Orlicz function M (t)
such that

M(t) < ess ;Ielsfz o(z,t) a.e in Q. (3.1)

We consider a Leray-Lions operator A : D(A) € W¢L#?(Q) — WLL¥(Q) (not defined everywhere)
given by
A(u) = —div a(z, u, Vu)

where a : Q x IR x RN — IR is a Carathéodory function (measurable with respect to 2 in Q for every
(5,€) in IR x RN, and continuous with respect to (s,£) in IR x IR for almost every z in Q) which
satisfies the following conditions

la(z, s, €)| < K(@) + kg (7(z, kals])) + kst (2. kal€))), (32)
(a(z,5,€) —a(z,s,6%)) - (€—€) >0  for £#E, (3.3)
al,5.6) € 2 o pla, L4, (3.4)

r
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for a.e. = € Q and all (s,¢) € IR x IRY, where K(z) is a nonnegative function lying in Ey(Q) and
a,/\ > 0 and k‘l,kg,kg,k‘4 > 0.
The nonlinear terms g(z, s, ) is a Carathéodory functions satisfying

lo(a, 5, )] < e(x) + bllsDp (. ), (3.5)

where b(-) : IRT —— IRT is a continuous and non-decreasing function such that b(-) € L'(IR). The
nonnegative function c(x) € L*(Q2) and A > 0.
‘We consider the problem

—div a(z,u, Vu) + g(z,u, Vu) = f in Q, (3.6)

with f € LY(Q).

4 Some technical Lemmas

We present here some lemmas, which will be used later in order to prove the existence theorem:

Lemma 4.1 [8] Let Q be an open subset of RN with finite measure. Let @, ¥ and v be Musielak
functions such that v << 1, and let f : Q X IR — IR be a Carathéodory function such for a.e. x € Q
and all s € IR:

|f (@, 8)] < (@) + kg o(a, kals)) (4.1)

Lemma 4.2 Let (f,), f C LY(Q) such that f, >0 a.e. in Q and f, — f a.e. in Q, with

/andarﬂ/ﬂfd:t.

Lemma 4.3  Assuming that (3.2) — (3.4) holds, and let (uy), be a sequence in Wq L, () such that

Then f. — f strongly in L'(S).

(i) wn — u weakly in WEL,(Q) for o(I1L, (), 11E,(£2)),
(i) (a(z,un, Vup))n is bounded in (Ly(Q))N,

(iii) Let Q, = {z €Q, |Vul < s} and xs his characteristic function, with

[ (@t V) = Vi) (Vi = V) de =0 s ms v (42
Q

then ©(z,|Vu,|) — @(x,|Vu|) in  LY(Q) for a subsequence.

Proof

Taking s > r > 0, we have:

0 < / (a(z, upn, Vu,) — a(z, up, Vu)) - (Vu, — Vu) dz
Ja.

(a(®, un, Vu,) — a(z, upn, Vu)) - (Vu, — Vu) dz
Qe (4.3)
(a(z, up, Vu,) — a(z, upn, Vuxs)) - (Vu, — Vuxs) dz
Qs
< /(a(z, Up, V) — a(, ty, Vuxs)) - (Vu, — Vuyxs) de.
Q

22022 yle (2)3a8)1 (3) st ) iald Loladl Al | 29
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thanks to (4.2), we obtain

lim /Q (a(z, un, Vu,) — a(x, uy, Vu)) - (Vu, — Vu)dz = 0. (4.4)

n— 00
Using the same argument as in (3.5), we claim that,
Vu, — Vu a.e. in Q. (4.5)

On the other hand, we have

/ a(z,un, Vuy,) - Vu, de = / (a(z, up, Vuy,) — alx, wy,, Vuxs)) - (Vu, — Vuy,) de
Q
+ [ a(z,un, Vuxs) - (Vu, — Vuyxs) dz (4.6)

+ [ a(z,un, Vuy,) - Vuxs dz.
Q
For the second term on the right hand side of (4.6), we have L,(Q) = Ey(Q), a(x,un, Vuxs) —
a(z,u, Vuys) in (Ey(Q))Y for the modular convergence, and Vu, — Vu in (L,(Q))N for
o(IIL,(Q2),11E,(©2)), then

lim a(x,u,, Vuxs) - (Vu, — Vuxs)der = lim a(z,u, Vuxs) - (Vu — Vux,) do
s,;n—o00 [ s—00

4.7)

lim a(z,u,0) - Vudzr = 0.

5700 Ja/a,

Concerning the last term on the right hand of (4.6), since (a(z,un, Vu,)), is bounded in (E,(2))Y
and using (4.5), we obtain

a(@, up, Vup) — a(z,u, Vu)  weakly in  (Ey(Q)N  for o(ILE4(2), L, (),

which implies that

lim a(z, up, Vuy,) - Vuxsdr = lim a(z,u, Vu) - Vuxs dr
s,;n—00 o s=oo Jq (4.8)
= / a(z,u, Vu) - Vudz.
Q
By combining (4.6) — (4.8) and thanks to (4.2), we conclude that
/ a(x, up, Vuy,) - Vu, dr — | a(z,u,Vu) - Vudzr as n — oo. (4.9)
Q Q

On the other hand, we have ¢(z, W—:“‘) >0 and ¢(z, M) — p(x, @) a.e. in Q. Using the
Fatou’s Lemma, we obtain

—_— < . .
/Qgp(w, 5\ )dx < l%qrggnof/ﬂ p(x, p\ ) dx (4.10)

Moreover, since a(zx, w,, Vu,) - Vu,, — ap(z, %) >0 and

a(z, wn, Vuy,) - Vu, — ap(z, |V;\Ln|) — a(z,u, Vu) - Vu — ap(z, @) a.e. in  Q,
In view of Fatou’s Lemma, we get
/ a(z,u, Vu) - Vu — ap(z, [Vl ) dx < liminf/ a(x, un, Vuy) - Vu, — ap(z, V| ) dz,
o ) w2t )

r
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using (4.9), we obtain
V]

/ ez, — [Vul ) dx > limsup [ ¢(z, ) dx. (4.11)
By combining (4.10) and (4.11), we deduce
/ o(z, |Vu”')dx — / o(x, M) dx as n— oo, (4.12)
0 A ) A
Using the Lemma 4.2, we conclude that
e il o V) pe), (4.13)

which finishes our proof.

5 Main results
Let & > 0, we define the truncation function Tj(-) : IR — IR, by
s if |s| <k,
Ti(s) = kl—zl it |s| > k.

Definition 5.1 A measurable function w is called an entropy solution of the strongly nonlinear
problem (3.6) if

Ty (v) € WL, (), g(z,u, Vu) € LY(Q),
/ a(z,u, Vu) - VI (u — v) dx + / g(x,u, Vu)T(u — v) de = / fTx(u—v)de, (5.1)
Q Q Q
for any v € Wi L, () N L>(Q),

Theorem 5.1 Assuming that (3.2) — (3.5) holds and f € L'(S2), then the problem (3.6) has at least
one entropy solution.

Proof of the Theorem 5.1.

Step 1 : Approximate problems.

Let (fn)new € WLE,(£2) N L%°(Q) be a sequence of smooth functions such that f,, — f in L}(Q)
and | f,| < |f] (for example f, = T,,(f)). We consider the approximate problem

—div a(z, Un, V) + gn (T, Un, Vy) = fn, (5.2)
where
g(z, 8,§) "
gn(z,8,8) = ———"—7">4— for neIN*.
(558 = T Ty, a0
Note that
lgn(z,5,8)| < |g(x, 5,6)] and |9 (z,5,8)| < n.

Since g (z, s, £) is bounded, there exists at least one weak solution u,, € W L,(£2) of equation (5.2)
(see. Theorem 5 of [12]).

22022 yle (2)3) (3)s (. Aot Zala)l als
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Step 2 : A priori estimates.
We define L e
B(s) = —/ b(|7]) dr.
@ Jo

Lofree
Note that, since the function b(-) is integrable on IR, then 0 < B(co) := E/ b(|t]) dt is finite.
0
Thus, taking Tk (uy,)eBUu) € W L,(Q) as a test function in (5.2), we get

/ a(x, up, Vuy,) - VTk(u,L)eB(lu"l)d:r+ / a(z, un, Vuy,) - Vu,bb(|u,LD|Tk(un)|eB(|“”‘)dI
+/ gn(z, un,Vun)Tk(un)eB“”“D dr = / fnTk(un)eB(lu"D dz,
Thanks to (3.4) and (3.5), we obtain
Vu
o f e et de s [t D) T )P0 de
{Jun|<k

< / le(@)I Tk (wn) P D da + / b(lun|)e (2, 'V;‘"')ITk(un,)\eBw) da + / FaTi(up)e0D da,
Q Q Q

it follows that
IVunl\ B(jun) B(oo) B(oo)
e p(z, e dz < ke |e(z)| dx + ke | f(z)] dz.
{unl<k} A Q Q
Then, there exists a constant C7 that does not depend on k£ and n such that

/ o(z, M) dr < kC1. (5.3)
o )

Thus (Tk(un))r is bounded in W L, (€2), uniformly in n, then there exists a subsequence still denoted
(T (un))nenw and vy € WEL,(Q) such that
Ti(un) = v, weakly in Wi Ly(Q) for o(IlLy, HEy) = o(I1L,, I1Ly,) (5.4)
then
Tk (un) = v strongly in  E,(Q2) and aein Q. (5.5)

Step 3 : Convergence in measure of u,,

Thanks to (3.1), we have

M(t)

=0 and lim =00
t— 00 t

< eoss i . .
M(t) < ess }Iels% p(z,t) with }gé

M(t)
t

Then, ¢(z,t) dominate M (t) near infinity. By Lemma 5.7 of [16], there exists two positive constants
Cy and Cj3, and a function ¢(-) € L*(Q2) such that

1o YTk (un)| [V Tk (un)]
Cs /Q M(|Tk(un)|) dz +/Qq(w) dz < /{Z AI(Cgf) +q(z)dr < /ng(w, f) dz.
So, in virtue of (5.3), we obtain
/ M(|Te(un)|) de < kCy for k> 1. (5.6)
Q
30 | deld daldals A 22022 e (2)548)) (3)Ust
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Then, we deduce that,

M(k) meas({|un| > k}) = / M(| T (un)]) der
|wn|>k}
< [ M(Ti(un)) da
< kC,.
Hence,

meas({|u,| > k}) =

M(k) k — H4-o0. (5.7)

For all § > 0, we have
meas{|u, — wy,| > 0} < meas{|u,| > k} + meas{|u,,| > k} + meas{| Ty (un) — Tk (um)| > 0}.

Let € > 0, using (5.7) we may choose k = k(e) large enough such that
meas{|u,| > k} < % and meas{|um| >k} < % (5.8)

Moreover, in view of (5.5) we have Ty (u,) — v strongly in E,(Q2), then, we can assume that
(Tk(un))newv is a Cauchy sequence in measure. Thus,

meas{|Th(un) — Tk (um)| > 0} < § for all m,n > no(,€). (5.9)
By combining (5.8) — (5.9), we conclude that
Vd,e > 0 there exists mng =no(d,e) such that meas{|up, —um| >3} <e Vn,m > ng(d,e),

it follows that (u,), is a Cauchy sequence in measure, then converges almost everywhere, for a
subsequence, to some measurable function u. Consequently, we have

Ti(un) — Ti(u) weakly in WiL,(Q) for o(IIL,,[1E,)
it follows that
Ti(un) = Tr(u) strongly in  E, (). (5.10)
Step 4 : Strong convergence of truncations.

In the sequel, we denote by &;(n), ¢ = 1,2,... various real-valued functions of real variables that
converge to 0 as n tends to infinity.
For h > k > 0, we set

b := max{b(s) : |s| < k}

Let ¢r(s) = sexp(ys?) with v = (%)2, it’s clear that

2by,

Pu(s) = —~lon(s)l = 5 Vs e R.

N =

Taking M = 4k + h, we define
2z = Uy — Th(up) + T (uy) — Th(w) and wy, := Tog(zn).
Using ¢, (wy)eBUunD) € WL, (Q) as a test function in (5.2), we obtain
/ a(, U, Vi) - Ve dh (wn)eBU4nD dz 4 = / a(, Un, Vg - Vg ¢ (wrn)b(|un])sign(uy, )B4 dg

+/ Hp () U, Vg ) b (wy,)eBU4nD dT_/ Frtr(wn)ePdunD dg.
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Since ¢ (wy,) have the same sign as u, on the set {|u,| > k}, then

1
—/ a(@, Un, Vun) - Vi i (wn )b(| 1| )sign (un )e Pun D) da
{Juy 1>k}

= (@, Uy Vn) - Vit b([tin]) b (wn )| (D dz
@ {un|>k} |

2 w(z,
{lunl>k} A

Unp |

)b(lunl)‘st(wn)‘eB(l“nl) dz,

Also, we have Vw,, =0 on {|u,| > M} and using (3.5) we conclude that
/ a(@, T (un), VI (un)) - Vndh (wn)eP 0w do
{lun|<M} b
- o, To(un), Vi (1)) - VT () 222
{lun|<k} «

Vun u.
= 2 Dl e D

< P [ (1fu(@)| + le@))|ox(n) | d.

[ (won)eB0D da

We have w,, = Tk (u,) — Ty (u) on {|u,| < k}, we conclude that
/ a(z, T (un), VIk(un)) - (VT (un) — VT ()@ (wy)eBU4nD) da
Hlun <k}

+ a(z, Tar(un), VI (un)) - Vera @l (wn )B4 da
{k<|un|<M} (5.11)

7—’“/ a(@, Ti(un), V% (tn)) - VI (un)| bk (wn)|eBV4 D da
« e

<P Q(Ifn(%‘)l + le(@)D I (wn)| da.

Concerning the second term on the left-hand side of (5.11), we have
/ a(x, Tar(uyn), VT (uy)) - anqﬁ?«(wn)eB(l“nD da
{k,<.|un|sl\/f}
= a(x, Tar(un), VI (wn)) - Vzn (f);C (wn)eB(‘u"D dx
{k<|un|<M}N{|zn| <2k}

> —eB) g (2k) la(a, Tar (un), Vs (un))| [V Tk (w)| da,
{k<|un|<M}

We have VTi(u) € (L,(2)N, and since (la(z,Tar(un), VT (un))|)n is bounded in Ly (Q) =
E,(€), there exists ¢ € E,(€) such that |a(xz,Ta(un), VIy(uy))| — ¢ weakly in E,(€) for
o(Ey (), L, (£2)). Therefore,

/ |a(z, Thr (un), VI (un))| [VTE(w)| do — C|VTk(uw)| dz = 0. (5.12)
{k<lun|<M} {k<|u|<M}

It follows that
/ (@, Tat (), V01 (1) - Vel (wn)e 04D da > 2 (n). (5.13)
{k<|un|<M}
Then, using (5.11), we deduce that

/ a(z, T (wn), Vi (wn)) - (VTk(tn) — V(1)) (wn)eB 4D da
{lun|<kY

o / o, Ti(un), VTk(un)) + Vi (un) 6k (wn) e de (5.14)

<P Q(Ifn(vﬂ)l + e(@) )bk (wn)| d + £2(n).

it
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Now, we will study each terms on the left-hand side of (5.14).

First estimate :
We define Q, = {z € Q@ : [VT;(u(x))| < s} and denote by x, the characteristic function of Q.
For the first term on the left-hand side of (5.14), we have

/{l AT, V() (Vi) - VT () (w0 )eB D)
= /Q a(z, Ti(un), VIk(tn)) - (VT (tn) — VT (w)xs) D (wn )ePTnD da
+/ a(@, T (un), VTk(un)) - (VTk(w)xs — VTk(w) @, (wp)eBP14nD do

a2, Ti(un), Vi (un)) - VT3 (1) ) (wn )eEunD da:
{lun|>k}

B /Q (a(, Ti(tn), Vi (wn)) = al@, Te(un), VTe()Xs)) - (VTk(un) = VT (u)Xo) S (wn)e PV da

+ [ a(z, Ti(un), Ve (w)Xs) - (VTk(tn) = V() xs) P (wy )P do

a(z, Ty, (un), VTi(up)) - Vi (), (wn)eP ) dz
\Q.

+ a(z, T (un), Vi (un)) - VI (w) @ (wn )e B0 da.
{lun|>k}

S—5—5—

(5.15)
For the second term on the right hand side of (5.15), we have a(z, Tj(u,), Vi (w)xs) = a(z, T (u), VI (u)X5)
in (Ey(Q)Y, and since VT (u,) — VTi(u) weakly in (Ly(Q)N for o(I1L,(R),I1E,(Q)), then

lim [ a(z, Tp(un), VI()xs) - (VT () — V()X P (wn )eB 04D da

n—oo Jo

a(z, Ty(u), VT (w)xs) - (VTe(1) — VT () xs) @ (Tor(t — T (w)))eP0HD da; (5.16)
= f a(z, Ty (u),0) - VI, (w) @, (Tor(u — Th,(u)))eB““') dx.
O\,

Concerning the third term on the right hand side of (5.15), since (a(z, Ty (uy), VIi(u,)))n is bounded
in (Ey(Q))V, there exists n € (Ey(Q))N such that a(z, Tk(un), VIk(u,)) = 1 weakly in (E,(Q))Y
for o(ILE(2),I1L,(£2)), it follows that

lim (1,(1'7 Tk(un)v VT/C(U7L)) : VTk(U)% (wn)eB“u"l) dx
n— 00 Q\QS (5417)
= [ 0 VI (Tanu — Ty ()P0 o

Q\Q.
For the last term of (5.15), we have

lim a(x, Ty (un), VIi(uy)) - VTk(u)gb;c(wn)eB(l“"l) dx
=20/, >k} (5.18)

= 7 - VT (w)d, (Tar(u — Th(u)))eBUD do = 0.
{lu|>k}

By combining (5.16) — (5.18), we deduce that
/ a(2, To(tn), V() - (VT () — V() (wn)eB 050D d
{lun <k}
= /Q (a(r,Tk(un),VTk(un)) —a(z, Ty, (uy,), VTk(u)Xs)) (VT (uy) — VTk(u)XS)gb;C(wn)eB("“"') dx

" /mg (a(x, Ti(u),0) = 1) - VTi () (Tor (u — Ty (w)))eP 1D da + e5(n)

(5.19)
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Second estimate :

For the second term on the right-hand side of (5.14), we have

2 [ 0o Bu), VL)) - Va0
= 2 [ (ol TieCun), V() = e, Tiun), 9T (X)) - (VTitn) = VL)) o) P01
+% a(@, Tr(un), VI (1) Xs) - (VT (un) — VT3 (1) xs) |k (wn) [P0 D dae

2by, .
s f a(a, Te(un), VT (un)) - VT () Xa| 6k (wn) |71V dar.
Q

(5.20)
For the second term on the right-hand side of (5.20), we have h > k > 0, similarly to (5.16) we
obtain

li_>m / a(@, Tr(un), Vi (u)xs) - (VTk(un) — VTk(u)Xs)|¢k(wn)|eB<|”“|> dr
n oo Q
= / a(x, Ty (), VTi(u)xs) - (VTi(w) = V() xo) |k (Tor (w — Ty (w))) [P 1D da (5.21)
= a(z, Ti(w), 0) - VT (w)|dr (Tor (w — Th (w))) [eB 14D dz = 0.
Q\Q.
Concerning the third term on the right-hand side of (5.20), we have
lim a(z, Tk (un), VIk(uy)) - VTk(u)XS|¢k(wn)|eB(|“’"|) dx
n—00 Q (5.22)
- / 1+ VT ()X f(Tor (u — Ty ()| 1D dez = 0.
Q

It follows that

% Q a(z, Ty, (un), VIi(un)) - VI (un)| ok (wn)|eB(lu"D dx
= A (a(@, Tk (un), Vi (un)) — a(@, Te(un), VI (u)Xs)) + (VTk(un) — VT (u)xs)| b (wn) P da
+e4(n).
(5.23)
By combining (5.14), (5.19) and (5.23), we conclude that
% / (a(xv Tk(u’rl)7 VTk(un)) - a(vak(un)v VTk(u)Xs)) . (VTk(u'n) — VT} (U)Xs) dx
< A (a(z, Tw(un), Vi (un)) — alz, Te(un), VIR(w)xs)) - (VTk(un) — VT (u)Xs)
s ($hn) — 2 )] P i (5.24)

< /g;\m (ale, T (), 0) = ) - VT3 () (T (u — Ty ()P0 dr
6P [ (@) + few) Dl (T = T ()| do + ()
We have |éy.(Tor(u — Th(uw)))| — 0 weak—x in L>(Q), then
[ 5@+ @Dl (Tonta = Ta() de — 0 as k= o0,
and since (a(z, T(u),0) — 1) - VTi(u) € L'(€), then

/Q\Q (a(x, Ti(u), 0) = 1) - VT (w)d} (Tor(u — Tn(w)eP1 D de — 0 as s — 0.
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Therefore, we conclude that

lim (a(@, Ti(un), VT (un)) — a(@, Ti(un), VIk(u)xs)) - (VIk(un) — VTi(u)xs) dz = 0. (5.25)

,5—00

In view of Lemma 4.3, we deduce that

Vu, — Vu a.e. in €, (5.26)
and VT, VT,
o, VIEL)ly o NI i), (527

Step 4 : The equi-integrability of g, (z, un, Vu,)
In order to pass to the limit in the approximate problem, we shall show that
Gn (2, Uy V) — g(z,u, Vu)  in - LYQ). (5.28)

Thanks to Vitali’s theorem, it suffices to prove that g, (z, un, Vu,) is uniformly equi-integrable.

We set o fo
B(s) == b d
(=2 [ ey ar

By taking T (u, — T}, (un))e§(|”"|) as a test function in (5.2), we have
/ a(x, un, Vuy) - VT (u, — Th,(un))eg(lu"‘) dx
+§/Qa(x,un,Vun) -V b(|w ) T3 (un — Ty (un))[eP 0D dar
—l—/( In (X, Unyy, Vup) Ty (U, — Th(un))eﬁqu”") dz

= / foTy (wy — Th (un))eﬁ(‘“’"‘) dz.
Q

According to (3.4) and (3.5), we obtain

a/ o(x, |VU71|)6§(\1M|) dx +2/ oz, |Vu"')b(|u"|)\T1(un 7 T},,(un))|€§(|u"|) dx
{h<|un|<h+1} A {h<|unl} - A
< (1fa(a)] + [el@))eP0D d 1 LVl T () PO i,
{h<lunl} {h<|ual}
(5.29)
it follows that
Vu, Bloo
/ b, 2l o < P [ (1) +fela))
{h+1<]un|} {n<lunl}
Thus, for all > 0, there exists h(n) > 1 such that
Vu,
/ b(lunl) (| 3 lyax < 3- (5.30)
{h(m) <lunl}
On the other hand, we set
bi(n) = max{b(s) : [s| < h(n)}.
For any measurable subset £ C 2, we have
vun ‘VT}L 7 (un)‘ vun
[ vttualyotr, Ty o < by [ ot B2 gy bt 00 o,
E E {h(m) <|un|}
(5.31)
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From (5.27), there exists 6(n) > 0 such that, for any meas(E) < §(n) we have

[V T () (un)| i
bh(n)/Ew(% ——Jdz< 3. (5.32)
Finally, by combining (5.30), (5.31) and (5.32), one easily has
b A Vualy -
(Jun])e(z, 3 Ydz <n forall meas(E) < d(n). (5.33)
E

Using (5.12), we deduce that (g.(z, un, Vu,))y is equi-integrable, and since
Gn (T, Un, Vu,) = g(z,u, Vu) ae. in Q,

we conclude (5.28).

Step 5 : Passage to the limit
Let v € WL, (Q) N L*°(Q), taking Tk (u, — ) as a test function in (5.2), we get
/ a(x, un, Vuy,) - VI (u, —v) de + / Hy(x,upn, Vuy) Tk (uy, — v) de = / SnTk(uy, —v)dz. (5.34)
Q Q Q

Choosing M = k + ||V]|eo, if |un| > M then |u, — v| > |un| — ||V]lco > k, therefore {|u, —v| < k} C
{|un| < M}. Firstly, we can write the first term on the left-hand side of the above relation as

/Qa(z, Up, V) - VI (u, —v) do = /Qa(x,TM(un), VT (un)) - (VI (un) = VU)X {jup—v|<k} dT
= / (a(z, Th (un), VI (un)) — al@, Th(un), Vv)) - (VI (wn) = VU)X {jun—v|<ky 4T

Q
+/ (1(:[, T]\/[ (un), VZ/) . (VTM(un) — VV)X{\un*Vlﬁk} dx.
Q

(5.35)
‘We have

(a(z, Tar(un), VI (un)) — alz, Tag(un), Vv)) - (VI (un) — VU)X {un —v|<k}

— (a(x, Tar (u), VT (w)) — a(z, Tag(w), Vi) - (VT (u) — VU)X {ju—v|<k} a.e. in - Q. (5.36)

According to (3.3) and Fatou’s lemma, we obtain
lim inf A a(x,up, Vuy,) - VI (u, —v) dx
> /Q(G(%TM(UL VI (w) — alz, Ty (w), Vv)) - (VI (u) = VU)X (u—vi<ky o (5.37)
+ WILIEO/Q a(x, Tar(un), Vv) - (VT (un) — VU)X {u,—v| <k} d.

For the second term on the right-hand side of (5.37), we have a(z,Th (urn), Vv) — a(z, Tar(u), Vv)
in (Ey(Q)Y, and VT (un) = VT (uw) weakly in (L, ()N for o(I1L, (), 11E,(Q2)), then
le a(x, T (un), Vv) - (VT (un) — VU)X (| i<k} dT
n oo O
= / a(z, Tp(u), Vv) - (VT (u) — VV)X{|U_,,|Sk} dx.
Q

Therefore, we get

liminf | a(x,upn, Vu,) - VIg(u, —v)de > / a(x, Ty (u), VT (w)) - (VT (w) — VU)X {ju—v|<k} dT

n— 00 Q

= [ a(z,u,Vu) - VIi(u—v)dr.
Q
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On the other hand, being Ty (u, — v) = Tr(u — v) weak-x in L>°(£2) and thanks to (5.28), we deduce
that

/ In (T, Un, Vuy) Ti(u, —v) doe — / g(z,u, Vu) T, (u — v) do (5.38)
Q Q
and
/ foTk(up —v) de — / f Ti(u—v)de. (5.39)
Q Q
Hence, putting all the terms together, we conclude the proof of Theorem 5.1.

Exemple 5.1 Taking p(z,t) = [t|P™) for 1 < p(x) < co. Let f € LY(Q), we consider the following
Carathéodory functions

a(z, u, Vu) = |Vu|P®)—2vy and H(z,u,Vu) = e"”‘2|Vu|p(w>.
1t is clear that a(xz,u,Vu) and g(x,u,Vu) verifies (3.2) — (3.4) and (3.5) respectively. In view of

the Theorem 5.1, the problem

{ 7div(|Vu|p(z)_2Vu) + e““lQ\Vu\p(z) =f in Q, (5.40)

u =0 on 0X),
has at least one entropy solution, i.e.

Tio(u) € War™ (@) and e | Wy P e L1 (Q),
/ |Vu|P@ =2y - VT (u, — v) dz + / e"“lQ\Vu\p(’”)Tk(un —v)de = / T (uy, —v)de, (5.41)
Q Q Q

for any v e WP®(Q)n Le(Q).
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